
8-bit
Microcontroller

Application
Note

Rev. 1079B–AVR–05/02
AVR032: Linker Command Files for the
IAR ICCA90 Compiler

Features
• XLINK Commands
• Segment Explanation and Location
• Linker File Examples for:

– AT90S2313
– AT90S8515
– AT90S8515 with External RAM and Memory Mapped I/O

Introduction
This application note describes how to make a linker command file for use with the
IAR ICCA90 C-compiler for the AVR® microcontroller.

Background
The C Compiler converts the source code to object code, which can be executed by a
microcontroller. This code is divided in modules with blocks of code and data. The out-
put from the compiler is relocatable, which means it has no absolute memory
addresses.

When the code is linked with XLINK, the code is placed at actual addresses in mem-
ory. The linker also adds pre-compiled code from external libraries.

When XLINK reads an external library module only the modules referred by the user
program will be loaded.

The output from XLINK is executable code that can be downloaded to the flash con-
troller, or simulated in AVR Studio.

To instruct XLINK what to do, the user writes a command file. The command file con-
tains a series of instructions to XLINK. The IAR Embedded Workbench includes a set
of standard XLINK command files for different memory sizes. These files are based
upon assumptions about the target system which may not be valid. Even if the
assumptions are valid, modifying the command file will in most cases lead to better
memory utilization.

This application note describes how to make a custom command file for the AVR con-
trollers. To make a customized XLINK linker file, use a text editor to write the code.
Save the file in the project directory with .XCL extension, e.g., mylink.xcl.

To use the file in the Embedded Workbench, select project → options, XLINK →
include. Select override default at XCL file name, and select the new .xcl file.
1

Figure 1. The Linker Places the Executable Object Code in Memory

XLINK Commands The XLINK linker commands which are used in the command file are briefly described in
the following section. All addresses and sizes are given as hexadecimal values. For a
complete reference see IAR Assembler Users Guide, XLINK options summary.

Comments:
-! This is a comment -!

Comments starts and stops with the -! sign

Define CPU type:
-c<cpu>

Example:
-ca90

Defines AVR as CPU type. Always start the XLINK file with this command.

Define segments:
-Z(memory type)segment name,……………,segment name= start(Hex)- end(Hex)

Example:
-Z(CODE)RCODE,CDATA0=1C-1FFF

Defines segments in flash memory. The RCODE segment here starts at address 1C
immediately followed by the CDATA0 segment. If the total size of these segments are
larger than the space offered, an error message will be given.

Example:
-Z(DATA)IDATA1,UDATA1,ECSTR,CSTACK+40=120-25F

SOURCE 2SOURCE 1

OBJECT CODE
2

LINKER LINKER
COMMAND

FILE

EXECUTABLE
PROGRAM

OBJECT CODE
1

C-COMPILER

SOURCE 3 LIBRARY

MEMORY
MAP

ASSEMBLER

OBJECT CODE
3

2 AVR032
1079B–AVR–05/02

AVR032
Defines segments in RAM memory. IDATA1 will start at address 120, followed by
UDATA1 and ECSTR. CSTACK + 40 means that the CSTACK segment will start 40
bytes (hex) higher than the end of ECSTR. (The stack grows backwards.)

Define replace names for external symbols:
-ereplace_name

Example:
-e_small_write=_formatted_write

Replaces the external standard _formatted_write routine with the reduced _small_write.
This is often done with the read and write routines scanf() and printf(), since the stan-
dard ANSI input and output routines are very comprehensive and result in large code.

Disable warnings:
-wno

Example:
-w29

Disable warning number 29.

Segments The AVR microcontroller can use several types of memory:

• Program memory. Flash memory that holds read-only segment.

• Internal RAM. On-chip SRAM, read-write segments.

• External Memory. Connected to the external data bus. Can be e.g., SRAM,
EPROM, EEPROM, or memory-mapped I/O.

The various memory types and segments are described below. The user may also
define segments, and place variables at a specific location.

Program Memory
Segments

Segments in program memory are read only.
Note: XLINK always counts segments in bytes, while the AVR program address counter counts

words.

INTVEC Holds the Reset and Interrupt Vectors for the controller. For devices with less than 8K
bytes memory each Interrupt Vector holds an RJMP (Relative Jump) instruction which is
two bytes long. For devices with more than 8K bytes memory each Interrupt Vector
holds a JMP (Jump) instruction which is four bytes long. See the AVR databook, reset
and interrupt handling for details.

The size of this segment must be given by the user.

For AT90S8515 this segment is located at address 0 - 1B. This gives 28 locations which
is sufficient to hold the Reset Vector and the 13 Interrupt Vectors:

Example:
-Z(CODE)INTVEC=0-1B

RCODE Holds code reachable with the RJMP instruction from INTVEC segment. C-STARTUP is
placed in the RCODE segment. C-STARTUP performs low level initialization of the
processor:

• Initialization of Stack Pointers for data and program

• Initializes static variables

• Calls the C function main ()
3
1079B–AVR–05/02

Normally, C-STARTUP should be left unchanged. See ICCA90 Users Guide for instruc-
tions on how to modify the default C-STARTUP routine. RJMP can reach the entire
address space for controllers up to 8K bytes of program memory (e.g., AT90S8515).

For devices with more than 8K bytes program memory, the interrupt vectors are two
words (four bytes). This means each Interrupt Vector can hold a JMP instruction which
reaches the entire memory space.

The size of this segment is deduced by XLINK.

CDATA0, CDATA1, CDATA2,
CDATA3

Holds initialization constants for tiny, small, far, and huge data. At startup these seg-
ments are copied to the RAM segments IDATA. The sizes of these segments are
deduced by XLINK.

Example:
char i = 0; /* GLOBAL C VARIABLE */

CCSTR Contains C string literals. At startup this segment is copied to the ECSTR segment in
SRAM. The size of this segment is deduced by XLINK.

FLASH Contains constants declared as type Flash. The constants are accessed in the program
with the LPM instruction. The size of this segment is deduced by XLINK.

Example:
flash char mystring[] = “String in flash memory” ;

This C-code to declares a constant array which is stored in flash memory.

SWITCH Contains jump tables generated by switch statements. The size of this segment is
deduced by XLINK.

CODE Contains the program code. The size of this segment is deduced by XLINK.

Declaring segments in program memory is straightforward. Two parameters are impor-
tant: Size of Interrupt Vector table, and size of program memory on the device.

The following lines are sufficient to declare program memory segments:
-Z(CODE)INTVEC=0-Interrupt vector size(bytes)

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,
FLASH,CODE=Interrupt vector size(bytes)-End of program memory(bytes)

This will set up the memory like Figure 2.

Figure 2. Program Memory Map

INTVEC

RCODE

CDATA0

CDATA1

CCSTR

SWITCH

FLASH

CODE
4 AVR032
1079B–AVR–05/02

AVR032
Data Memory Segment Data memory consists of internal and external RAM. The 32 general purpose registers
are mapped into RAM addresses 0 - 1F (hex), the 64 I/O Registers are mapped into
addresses 20 - 5F (hex). Internal RAM is starting at address 60 (hex). The start of the
external RAM area is device dependent.

Variables in RAM are read-write variables.

Figure 3. Data Memory Map

UDATA0, UDATA1, UDATA2,
UDATA3

Uninitialized data for tiny, small, far and huge variables respectively. Contains space for
variables which are not initialized at declaration. The size of this segment can either be
given by the user or deduced by XLINK. The latter is recommended.

IDATA0, IDATA1, IDATA2,
IDATA3

Initialized data for tiny, small, far, and huge variables. Holds data that are initialized at
declaration. Variables in IDATA are copied from the corresponding CDATA segment in
the code at startup. The size of this segment can either be given by the user or deduced
by XLINK. The latter is recommended.

If the compiler option -y (writable strings) is active, const objects will be copied to IDATA
segment from CDATA at startup.

Note: Variables declared as tiny are placed in the IDATA0 and UDATA0 segments. Tiny
variables can be reached by using 8-bit address. This give them a address reach of
256 bytes (0 - FF). Due to the fact that the General Purpose Registers and I/O Registers
are memory mapped, tiny variables must not be placed on addresses below 60 (hex),
and they must not be placed at addresses higher than 255 (hex) (FF).

Example:
tiny int temp;

C-declaration of a variable placed in the UDATA0 segment.

There are several ways of setting the segments for tiny variables.

Example:
-Z(DATA)IDATA0,UDATA0=60-FF

This allocates the address space between addresses 60 - FF (hex) for tiny variables. It
allocates the entire address space from address 60 to address FF, even if the program
does not use tiny variables! If the program uses more tiny variables than there is space
for the user will get an error message.

Example:
-Z(DATA)IDATA0,UDATA0,RSTACK+20,IDATA1,
UDATA1,ECSTR,CSTACK+60=60-25F

32 General Purpose Registers

64 I/O Registers

Internal SRAM

External SRAM

0000

0020

0060

variable
5
1079B–AVR–05/02

This places the tiny variables in the lower part of the internal RAM address space,
immediately followed by the RSTACK segment. No RAM space will be lost if there is few
tiny variables, but no warning will be given if the program contains so many tiny vari-
ables that the IDATA0/UDATA0 exceed address FF (hex).

Watch out for unpredictable behavior of the program caused by this possibility, read the
linker map file listing carefully to investigate the actual space required by the tiny
variables.

RSTACK Return Stack. This segment holds the return addresses of function calls. The Stack
Pointer is used to access this stack. The size of RSTACK is application dependent.
Each call to a function requires two bytes on the Stack for return addresses. Return
addresses for interrupt routines are also stored on the Return Stack. If the Stack Size is
declared too small, the Stack will overwrite another segment in the data area.

ECSTR Holds writable copies of C string literals if the compiler option -y (writable strings) is
active. This segment is copied from CCSTR segment in CODE at startup. If there is a
shortage of data memory, check whether the strings are constants and use flash decla-
rations instead to minimize data memory usage.

CSTACK Data Stack. This segment holds the Return Stack for local data. The Y-pointer (R28 -
R29) is used to access this Stack. The size of CSTACK is application dependent. The
CSTACK is used to store local variables and parameters, temporary values and storing
of registers during interrupt. If the Stack Size is too small, the Stack will overwrite
another segment in the data area.

External PROM Warning: If the compiler option -y (writable strings) is not active (default), the compiler
assumes there is an external PROM in the system. In most cases the system does not
have an external PROM, and the writable string should be active (checked). To mini-
mize data memory usage it is recommended to use the flash keyword for constants.

Example:
flash char mystring[] = “String in flash memory”;

The following read-only segments are placed in external PROM.

CONST Holds variables declared as const.

CSTR Holds string literals when the -y (writable strings) is inactive.

Note: The CONST and CSTR should only be included in the XLINK file if there is an external
PROM in the system.

User Defined Segments The user may define segments and place variables at absolute addresses in memory.

Example: Memory mapped Real Time Clock placed at absolute address in external
address space. Linker file command:

-Z(DATA)RTC=0F00-0F70

C Code to place variables in this memory mapped I/O:
#Pragma Memory=DATASEG(RTC)

UNSIGNEDCHAR SEC,MIN,HOURS;

#PRAGMA MEMORY=DEFAULT
6 AVR032
1079B–AVR–05/02

AVR032
Example Code 1 Example using AT90S2313 with 2K bytes flash memory and 128 bytes internal RAM.
The segments will be set up like the memory map in Figure 4 below. In code memory
only the INTVEC segment has a specific address location. The other segments will be
placed at the subsequent addresses in the order specified in the linker file. In RAM, only
the order of the segments are specified, not the specific address locations.

Figure 4. Memory Map

-! XLINK command file for the AT90S2313 128 bytes(60 - DF) data address

space and 2 Kbytes(0- 7FF) program address space. -!

-! Define CPU type (AVR) -!

-ca90

-! Define reset and I/O interrupt vector segment, requires 22(dec) locations
-!

-Z(CODE)INTVEC=0-15

-! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CCSTR,SWITCH,FLASH,CODE=16-7FF

-! Define segments in RAM

The registers are in 0-1F, memory mapped I/O in 20-5F, Built-in SRAM in 60-DF.
-!

-! Return stack size is 10 bytes(hex), data stack size is 40 bytes(hex) -!

-Z(DATA)IDATA0,UDATA0,RSTACK+10,ECSTR,CSTACK+40=60-DF

-! Select reduced "printf" support to reduce library size.

See the configuration section of the IAR C-compiler Users Guide concerning use
of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

-! Disable floating-point support in "scanf" to reduce library size.

See the configuration section of the IAR C-compiler Users Guide concerning use
of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

-! Suppress one warning which is not relevant for this processor -!

-w29

-! Load the tiny 'C' library for processor option_VO -!

cl0t

INTVEC
0000

0016

07FF

RCODE

CDATA0

CCSTR

SWITCH

FLASH

CODE

CODE MEMORY

32 General Purpose Registers
0000

0020

00DF

64 I/O Registers

IDATA0

UDATA0

RSTACK

ECSTR

CSTACK

DATA MEMORY

0060
7
1079B–AVR–05/02

Example Code 2 Example using AT90S8515 with 8K bytes flash memory and 512 bytes internal RAM.
The segments will be set up like the memory map in Figure 5 below. In code memory
only the INTVEC segment has a specific address location. The other segments will be
placed at the subsequently addresses in the order specified in the linker file. In RAM,
only the order of the segments are specified.

Figure 5. Mamory Map

-! XLINK command file for AT90S8515. 512 bytes data address

space and 8 Kbytes program address space. -!

-! Define CPU type (AVR) -!

-ca90

-! Define reset and interrupt vector segment, requires 28(dec) locations -!

-Z(CODE)INTVEC=0-1B

-! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,FLASH,CODE=1C-1FFF

-! Define segments in RAM -!

-! The registers are in addresses 0-1F and memory mapped I/O in addresses
20-5F, built-in SRAM in addresses 60-25F.

Data stack(CSTACK) size is 60 bytes(hex), return stack(RSTACK) size is
20 bytes(hex) -!

-Z(DATA)IDATA0,UDATA0,RSTACK+20,IDATA1,UDATA1,ECSTR,CSTACK+60=60-25F

-! Select reduced "printf" support to reduce library size.

See the configuration section of the IAR C-compiler Users Guide
concerning use of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

-! Disable floating-point support in "scanf" to reduce library size.

See the configuration section of the IAR C-compiler Users Guide concerning
use of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

-! Suppress one warning which is not relevant for this processor -!

-w29

-! Load the small 'C' library for processor option_v1-!

cl1s

INTVEC
0000

001C

1FFF

RCODE

CDATA0

CCSTR

SWITCH

FLASH

CODE

CODE MEMORY

32 General Purpose Registers
0000

0020

025F

64 I/O Registers

IDATA0

UDATA0

RSTACK

ECSTR

CSTACK

DATA MEMORY

0060

IDATA1

UDATA1

INTERNAL RAM
8 AVR032
1079B–AVR–05/02

AVR032
Example Code 3 Example using AT90S8515 with 8K bytes Flash memory, 512 bytes internal RAM,
32K bytes external RAM and memory mapped I/O. The RSTACK (Return Stack) is
placed in external memory.

In code memory only the INTVEC segment has a specific address location. The other
segments will be placed at the subsequent addresses in the order specified in the Linker
File. In RAM, the addresses from 60 - FF (hex) are reserved for tiny variables. The rest
of the internal memory is reserved for ECSTR and CSTACK segment.

Figure 6. Memory Map

-! XLINK command file for AT90S8515. 512 bytes internal data address

space, 32Kbytes external SRAM, memory mapped I/O

and 8 Kbytes program address space. -!

-! Define CPU type (AVR) -!

-ca90

-! Define interrupt vector segment -!

-Z(CODE)INTVEC=0-1B

-! Define segments in flash memory -!

-Z(CODE)RCODE,CDATA0,CDATA1,CCSTR,SWITCH,FLASH,CODE=1C-1FFF

-! Define segments in RAM

Built-in SRAM in 60-25F. The registers are in 0-1F and memory mapped I/O
in 20-5F -!

-! The IDATA0 and UDATA0 segments contains tiny variables, the segments must
be placed within the reach of a tiny (8 bits) pointer. -!

-Z(DATA)IDATA0,UDATA0=60-FF

-! Data stack in internal memory, size is 100(hex)bytes -!

-Z(DATA)ECSTR,CSTACK+100=100-25F

-! 32Kbytes external SRAM starting, using near variables -!

-! Return stack size is 40(hex) bytes in external RAM -!

-! First tell CSTARTUP that RSTACK is placed in External RAM -!

-e?RSTACK_IN_EXTERNAL_RAM=?C_STARTUP

-Z(DATA)IDATA1,UDATA1,RSTACK+40=260-7FFF

-! External memory mapped IO is used -!

-Z(DATA)NO_INIT=8000-FFFF

INTVEC
0000

001C

00FF

RCODE

CDATA0

CCSTR

SWITCH

FLASH

CODE

32 General Purpose Registers
0000

0020

025F

64 I/O Registers

IDATA0

UDATA0

ECSTR

CSTACK

0060

IDATA1

UDATA1

INTERNAL RAM

EXTERNAL RAM
RSTACK

}
1FFF

MEMORY MAPPED I/O

07FFF}
9
1079B–AVR–05/02

-! Select reduced "printf" support to reduce library size.

See the configuration section of the IAR C-compiler Users Guide
concerning use of printf/sprintf. -!

-e_small_write=_formatted_write

-e_small_write_P=_formatted_write_P

-! Disable floating-point support in "scanf" to reduce library size.

See the configuration section of the IAR C-compiler Users Guide concerning
use of scanf/sscanf -!

-e_medium_read=_formatted_read

-e_medium_read_P=_formatted_read_P

-! Suppress one warning which is not relevant for this processor -!

-w29

-! Load the small 'C' library for processor option_v1-!

cl1s

Reference IAR C-Compiler Users Guide.

IAR Assembler Users Guide, XLINK section.

AVR Microcontroller data book May 1997.
10 AVR032
1079B–AVR–05/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1079B–AVR–05/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Background
	XLINK Commands
	Segments
	Program Memory Segments
	INTVEC
	RCODE
	CDATA0, CDATA1, CDATA2, CDATA3
	CCSTR
	FLASH
	SWITCH
	CODE

	Data Memory Segment
	UDATA0, UDATA1, UDATA2, UDATA3
	IDATA0, IDATA1, IDATA2, IDATA3
	RSTACK
	ECSTR
	CSTACK

	External PROM
	CONST
	CSTR

	User Defined Segments

	Example Code 1
	Example Code 2
	Example Code 3
	Reference

