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AVR222: 8-point Moving Average Filter

Features
• 31-word Subroutine Filters Data Arrays up to 256 Bytes
• Runable Demo Program

Introduction
The moving average filter is a simple Low Pass FIR (Finite Impulse Response) filter
commonly used for smoothening an array of sampled data. This application imple-
ments an 8-point filter to simplify the average calculation. The application note gives
an excellent demonstration of how the powerful addressing modes in the AVR archi-
tecture can be utilized.

Theory
The moving average filter can be imagined as a window of a certain size (in this case
eight) moving along the array, one element at a time. The middle element of the win-
dow (in this case element #4) is replaced with the average of all elements in the
window. See Figure 1. However, it is important to remember the value of new ele-
ments and not make the replacement until the window has passed. This must be done
since all averages shall be based on the original data in the array.

Figure 1. The 8-point Averaging Window

When the ends of the array is filtered and parts of the window is outside the array, the
averaging must be done on less elements than when the entire window is inside the
array. This implementation leaves the ends of the array unfiltered to save code. For an
8-point filter, this means that when n elements are filtered, elements 1, 2, 3, and n-3,
n-2, n-1, n remain unchanged when filtering is complete. For many applications, this is
no problem.

CURRENT WINDOW
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NEW VALUE = (22+13+17+26+25+23+14+20) / 8 = 20
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Implementation The application defines an 8-byte ring buffer (R0 - R7) which always holds the data in
the current averaging window. The filter routine calculates the sum of the window and
computes the average, which is stored back in the array. The AVR's three pointers are
assigned the following functions:

• Z points to the array element to be replaced.

• Y points inside the ring buffer when the sum of the buffer contents is calculated in a
program loop.

• X is the ring pointer which holds the position of new values to the buffer.

Usage To filter an array in SRAM, use the following procedure:

1. Load ZH with the high address of the first element in the array.

2. Load ZL with the low address of the first element in the array.

3. Load the register variable “t_size” with the number of elements in the table.

4. Call “mav8”.

Algorithm Description The following procedure describes how the sorter is implemented on the AVR:

Initialization 1. Clear the X and Y pointers (point to R0).

Fill Ring Buffer Initially:

1. Get the SRAM contents at Z and increment Z.

2. Store in register at Y and increment Y.

3. If Y not eight, goto Step 2.

Find Average 1. Clear the 16-bit register variable “AH:AL” (Average Value).

2. Clear YL (point to R0).

3. Get the register contents at Y.

4. Add to “AH:AL”.

5. If Y not eight, goto Step 8.

6. Divide “AH:AL” by 8.

Write Back Average and Get
Next Value to Buffer

1. Get SRAM contents at Z+5 (Next value to buffer).

2. Store to register at X and increment X.

3. Clear the highest five bits of XL to make it point to the start of the buffer if the end
is passed.

4. Store AL at Z and increment Z.

5. Decrement “t_size”.

6. If “t_size” is not zero (end of array is reached) goto Step 5.
2 AVR222
0940B–AVR–05/02



AVR222
Figure 2. “mav8” Flow Chart
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Performance

Note: 1. SIZE = Number of bytes to filter

Test/Example
Program

“avr222.asm” contains a test program which copies 60 bytes of random data from the
Program memory to SRAM and calls “mav8” to filter the data. The test program is well
suited for running under the AVR Studio®.

Table 1. “mav8” Register Usage

Register Input Internal Output

R0-R7 Ring Buffer

R8 “mav_tmp” – Temporary Storage

R9 “AL” – Average Low Byte

R10 “AH” – Average High Byte

R16 “t_size” – Number of Elements “t_size” – Loop Counter

R26 XL

R27 XH

R28 YL

R29 YH

R30 Z – Address of First Element ZL

R31 Z – Address of First Element ZH

Table 2. “mav8” Performance Figures(1)

Parameter Value

Code Size (Words) 30 + return

Execution Time (Cycles) 59 + 75 x (SIZE - 7) + return

Register Usage • Low Registers
• High Registers
• Pointers

:11
:1
:X, Y, Z

Interrupts Usage None

Peripherals Usage None
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