
8-bit
Microcontroller

Application
Note

Rev. 0940B–AVR–05/02
AVR222: 8-point Moving Average Filter

Features
• 31-word Subroutine Filters Data Arrays up to 256 Bytes
• Runable Demo Program

Introduction
The moving average filter is a simple Low Pass FIR (Finite Impulse Response) filter
commonly used for smoothening an array of sampled data. This application imple-
ments an 8-point filter to simplify the average calculation. The application note gives
an excellent demonstration of how the powerful addressing modes in the AVR archi-
tecture can be utilized.

Theory
The moving average filter can be imagined as a window of a certain size (in this case
eight) moving along the array, one element at a time. The middle element of the win-
dow (in this case element #4) is replaced with the average of all elements in the
window. See Figure 1. However, it is important to remember the value of new ele-
ments and not make the replacement until the window has passed. This must be done
since all averages shall be based on the original data in the array.

Figure 1. The 8-point Averaging Window

When the ends of the array is filtered and parts of the window is outside the array, the
averaging must be done on less elements than when the entire window is inside the
array. This implementation leaves the ends of the array unfiltered to save code. For an
8-point filter, this means that when n elements are filtered, elements 1, 2, 3, and n-3,
n-2, n-1, n remain unchanged when filtering is complete. For many applications, this is
no problem.

CURRENT WINDOW

26 25 23 14 20 16 16 18 1417132225283012

NEW VALUE = (22+13+17+26+25+23+14+20) / 8 = 20
1

Implementation The application defines an 8-byte ring buffer (R0 - R7) which always holds the data in
the current averaging window. The filter routine calculates the sum of the window and
computes the average, which is stored back in the array. The AVR's three pointers are
assigned the following functions:

• Z points to the array element to be replaced.

• Y points inside the ring buffer when the sum of the buffer contents is calculated in a
program loop.

• X is the ring pointer which holds the position of new values to the buffer.

Usage To filter an array in SRAM, use the following procedure:

1. Load ZH with the high address of the first element in the array.

2. Load ZL with the low address of the first element in the array.

3. Load the register variable “t_size” with the number of elements in the table.

4. Call “mav8”.

Algorithm Description The following procedure describes how the sorter is implemented on the AVR:

Initialization 1. Clear the X and Y pointers (point to R0).

Fill Ring Buffer Initially:

1. Get the SRAM contents at Z and increment Z.

2. Store in register at Y and increment Y.

3. If Y not eight, goto Step 2.

Find Average 1. Clear the 16-bit register variable “AH:AL” (Average Value).

2. Clear YL (point to R0).

3. Get the register contents at Y.

4. Add to “AH:AL”.

5. If Y not eight, goto Step 8.

6. Divide “AH:AL” by 8.

Write Back Average and Get
Next Value to Buffer

1. Get SRAM contents at Z+5 (Next value to buffer).

2. Store to register at X and increment X.

3. Clear the highest five bits of XL to make it point to the start of the buffer if the end
is passed.

4. Store AL at Z and increment Z.

5. Decrement “t_size”.

6. If “t_size” is not zero (end of array is reached) goto Step 5.
2 AVR222
0940B–AVR–05/02

AVR222
Figure 2. “mav8” Flow Chart

AH:AL AH:AL
+MAV_TMP

MAV8

CLEAR X AND Y

MAV_TMP @Z
Z Z + 1

@Y MAV_TMP
Y Y + 1

CLEAR AH:AL, YL

MAV_TMP @Y
Y Y + 1

YL = 8 ?

YL = 8 ?

Return

Y

T_SIZE = 0

Y

@X MAV_TMP,
X X + 1

MAV_TMP @(Z+5)

AH:AL AH:AL / 8

T_SIZE T_SIZE - 1

@Z AL,
Z Z + 1

CLEAR X BITS 7,6,5,4,3

Y

NC
A

LC
U

LA
T

E
 A

V
E

R
A

G
E

F
IL

L
R

IN
G

 B
U

F
F

E
R

W
R

IT
E

 B
A

C
K

 A
V

E
R

A
G

E
 A

N
D

 G
E

T
 N

E
X

T
 V

A
LU

E
 T

O
 R

IN
G

 B
U

F
F

E
R

3
0940B–AVR–05/02

Performance

Note: 1. SIZE = Number of bytes to filter

Test/Example
Program

“avr222.asm” contains a test program which copies 60 bytes of random data from the
Program memory to SRAM and calls “mav8” to filter the data. The test program is well
suited for running under the AVR Studio®.

Table 1. “mav8” Register Usage

Register Input Internal Output

R0-R7 Ring Buffer

R8 “mav_tmp” – Temporary Storage

R9 “AL” – Average Low Byte

R10 “AH” – Average High Byte

R16 “t_size” – Number of Elements “t_size” – Loop Counter

R26 XL

R27 XH

R28 YL

R29 YH

R30 Z – Address of First Element ZL

R31 Z – Address of First Element ZH

Table 2. “mav8” Performance Figures(1)

Parameter Value

Code Size (Words) 30 + return

Execution Time (Cycles) 59 + 75 x (SIZE - 7) + return

Register Usage • Low Registers
• High Registers
• Pointers

:11
:1
:X, Y, Z

Interrupts Usage None

Peripherals Usage None
4 AVR222
0940B–AVR–05/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

0940B–AVR–05/02 0M

ATMEL®, AVR®, and AVR® Studio are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Theory
	Implementation
	Usage
	Algorithm Description
	Initialization
	Find Average
	Write Back Average and Get Next Value to Buffer

	Performance

	Test/Example Program

