
8-bit
RISC
Microcontroller

Application
Note

Rev. 1143B–AVR–05/02
AVR236: CRC Check of Program Memory

Features
• CRC Generation and Checking of Program Memory
• Supports all AVR® Controllers with LPM Instruction
• Compact Code Size, 44 Words (CRC Generation and CRC Checking)
• No RAM Requirement
• Checksum Stored in EEPROM
• Execution Time: 90 ms (AT90S8515 @ 8 MHz)
• 16 Bits Implementation, Easily Modified for 32 Bits
• Supports the CRC-16 Standard, Easily Modified for CRC-CCITT, CRC-32

Introduction
This application note describes CRC (Cyclic Redundancy Check) theory and imple-
mentation of CRC to detect errors in program memory of the Atmel AVR
microcontroller.

CRC is a widely used method of detecting errors in messages transmitted over noisy
channels. New standards for secure microcontroller applications has introduced CRC
as a method of detecting errors in Program memory of microcontrollers. It is preferable
to implement the CRC calculation in compact code with low requirement for data stor-
age memory since it frees up MCU resources for use in the actual application.

The implementation of CRC used in this application note is optimized for minimum
code size and register usage.

Figure 1. CRC Checking of Program Memory Using 16-bit Divisor

0011011 10011100 10000101 1011

ADDRESS 0 ADDRESS 1FFF

8K BYTE

XOR

10000000 00000101

CODE 1

DIVISOR 1
1



Theory of Operation Checksums was originally used in communication through noisy channels. A number
(the checksum) is computed as a function of the transmitted message. The Receiver
uses the same function to compute a checksum, and compares the computed value with
the value received from the transmitting side.

In this application note the checksum is constructed as a function of the code, and
stored in the internal EEPROM. The microcontroller can later use the same function to
calculate the checksum of the code and compare it with the appended checksum.

Example: Checksum calculated by summing the numbers of the code:
Code: 04 29 06

Code with checksum: 04 29 06 39

This checksum is simply the sum of the numbers in the code.

If the second byte in the code is corrupted from 29 to 23, the error will be detected when
the original checksum is compared with the computed checksum.

Original code with checksum: 04 29 06 39

Code with error: 04 23 06 39 -> Wrong !

If the first byte in the code is corrupted from 04 to 10 and the second byte is corrupted
from 29 to 23, the checksum will not detect the errors.

Original code with checksum: 04 29 06 39

Code with error: 10 23 06 39-> Correct !

The problem with this checksum is that it is too simple. It may not detect errors on multi-
ple bytes in the code and it may not detect errors in the checksum itself.

This example shows that addition is not sufficient to detect errors. CRC calculations use
division instead of addition to calculate the checksum for the code. The principles are
similar, but by using division multiple bit errors and burst errors will be detected.

The CRC algorithm treat the Program memory as an enormous binary number, which is
divided by another fixed binary number. The remainder of this division is the checksum.
The microcontroller will later perform the same division and compare the remainder with
the calculated checksum.

Note that the division uses polynomial (modulo-2) arithmetic, which is similar to regular
binary arithmetic, except it uses no carry. The addition of the numbers with polynomial
arithmetic are simply XOR’ing the data.

Example: Addition in polynomial arithmetic:

1011 0110
+ 1101 0011

0110 0101

The addition is equal to XOR’ing the two numbers.

Lets define the some properties for the polynomial arithmetic:

M(x) = a k-bit number (the code to be checked).

G(x) = an (n+1) bit number (the divisor or polynom).

R(x) = an n-bit number such that k>n (the remainder or checksum).

M(x)*2n

G(x)
-------------------- Q(x) R(x)

G(x)
----------- Where Q(x) is the quotient+=
2 AVR236
1143B–AVR–05/02



AVR236
Q(x) can now be described as:

Which is equal to Q(x) since the divisor and the remainder are the same number, and
adding it to itself is the same as XORing it, which results in zero.

Example of CRC Division The hexadecimal number 6A which is the binary number 0110 1010, is divided with the
divisor 1001 (=9 hex). The checksum will be the remainder of the operation 0110 1010
divided with 1001.

First append W zeros to the end of the original message (where W is the width of the
divisor).

011010100000 / 1001 = 01100 Quotient is Ignored

0000

1101

1001

1000

1001

0011

0000

0110

0000

1100

1001

1010

1001

0110

0000

1100

1001

0101 = 5 = Remainder = Checksum

The checksum is added to the end of the original code. The resulting code will be 6A5.
When this code is checked, the code and the checksum is divided by the divisor. The
remainder of this division is zero if no errors has occurred, non-zero otherwise.

Q(x)
M(x)*2n R(x)+

G(x)
-------------------------------------- M(x) 2

n
equals adding n zeros to the end of the code×=

If M(x)*2n

G(x)
------------------------- is replaced in the last equation

M(x)*2n+R(x)
G(x)

----------------------------------- Q(x)+
R(x)
G(x)
-----------+

R(x)
G(x)
-----------=Q(x)=
3
1143B–AVR–05/02



Several standards are used today for CRC detection. The characteristics of the divisor
vary from 8 to 32 bits, and the ability to detect errors varies with the width of the divisor
used. Some commonly used CRC divisors are:

CRC-16 = 1 1000 0000 0000 0101= 8005(hex)

CRC-CCITT = 1 0001 0000 0010 0001= 1021 (hex)

CRC-32 = 1 0000 0100 1100 0001 0001 1101 1011 0111 = 04C11DB7 (hex)

Observe that in 16 bits divisors, the actual numbers of bits are 17, and in a 32 bits divi-
sor the number of bits are 33. The MSB is always 1.

Software Description

Main Program The main program is supplied to show operation of both the CRC generation and CRC
checking. The checksum generated is stored in the internal EEPROM, and read back
before the CRC checking is performed.

In most applications, the checksum will be generated by a programmer and placed at
the last address of the Program memory.

Figure 2. Flowchart for the Main Program

START

INITIALIZATION
UNIT STACK POINTER

SET UP I/O PORTS

STATUS = 00

CRC_GEN

STORE CHECKSUM
IN EEPROM

STATUS = FF

LOAD CHECKSUM
FROM EEPROM

CRC_GEN

OUTPUT CHECKSUM

END

GENERATE CHECKSUM

CHECK CHECKSUM
4 AVR236
1143B–AVR–05/02



AVR236
The main program call the sub routine CRC_gen with Status Register = 0x00 after reset
to generate a new checksum for the code. The generated checksum is stored in
EEPROM.

To check the CRC checksum the rout ine CRC_gen is ca l led with Sta tus
Register = 0xFF, or any value different from 0x00.

CRC Checksum
Generation

The operation is based on the principle of rotating the entire Program memory bit by bit.
The MSB is shifted into the Carry Flag. If the Carry Flag is 1 (one), the word is XOR’ed
with the divisor. Note that the MSB of the Program memory which is shifted into the
Carry Flag also is XOR’ed with the MSB of the divisor. Since they are both 1, the result
will always be zero and the division is ignored.

At the end of the Program memory 16 zeros are appended to the code. The checksum
is the resulting value of the complete XOR operation.

CRC Checksum
Checking

The same principles are applied as for the generation, but the generated checksum is
appended to the code, replacing the zeros. The result of the calculation including the
appended checksum is zero if no errors has occurred, non-zero otherwise.

If the checksum is included in the Program code, only the checking part of the computa-
tion needs to be done in the Program code.

The same routine is used for both CRC generation and the CRC checking. A Global
Register Status is loaded with 0x00 at function call to perform CRC generation. If the
Status Register is loaded with any value different from 0x00 at function call, the function
performs a CRC checksum checking.

The flowchart shows the flow of crc_gen routine which includes both the CRC genera-
tion and CRC checking.

The flowcharts in Figure 3 and Figure 4 describes the operation of the crc_gen
subroutine.
5
1143B–AVR–05/02



Figure 3. CRC_gen Subroutine

START

LOAD DIVISOR VALUE

LOAD 2 BYTES

ROTATE WORD
ROUTINE

ROUTINE WORD
ROUTINE

APPEND CHECKSUM

RETURN

LOAD INITIAL VALUE

END
OF

CODE

STATUS
= 00

APPEND ZEROS

NO

YES
6 AVR236
1143B–AVR–05/02



AVR236
Figure 4. Rotate Subroutine

Modifications The code example implements a 16-bit checksum for CRC-16 computation. The code is
easily modified to support 32-bit checksum by increasing the size of the code buffer
from 32 to 64 bits, and increasing the size of the divisor from 16 to 32 bits.

If the checksum is generated by a programmer and placed in the last memory location,
only the code for checking the checksum needs to be included in the program. The code
in the “end” section of the routine can be removed. Please see comments in the code.

Some CRC-algorithms requires the data register to have an initial value different from
0x00. If other values is used, the initial values can be loaded into the registers, replacing
the two first LPM instructions. See comments in code for more information.

If the CRC algorithm is reflected, which means that the LSB of the bytes are shifted in
first instead of the MSB, the routine can support this by replacing the LSL (Logical Shift
Left) and ROL (Rotate Left) instructions with LSR (Logical Shift Right) and ROR (Rotate
Right) instructions.

Other implementations of CRC computation exists with higher speed, most of them use
a lookup table to increase the speed of the operation. The RAM requirements for such
application makes them suitable for more complex systems.

START

LOAD BIT COUNTER
11 (HEX)

SHIFT DATA LEFT

RETURN

DECREMENT BIT
COUNTER

COUNTER
= 0

CARRY
= 7

XOR CODE 
AND DIVISOR

NO

YES

NO

YES
7
1143B–AVR–05/02



Resources

References Fred Halsall

“Data Communication, Computer Networks and Open Systems”

1992 Addison-Wesley Publishers

Ross N. Williams

“The Painless Guide to Error Detection Algorithms”

ftp://ftp.rocksoft.com/papers/crc_v3.txt

Table 1. CPU and Memory Usage

Function Code Size Cycles Register Usage Interrupt Description

main 36 words –
R2, R3, R16, R22,
R23, R24, R25

–
Initialization and
Example
Program

CRC_gen 44 words
700.000

(approx.)

R0, R1, R2, R3, R17,
R18, R19, R20, R21,
R22, R30, R31

–
Generate and
Check CRC
Checksum

EEwrite 7 words 13 cycles R16, R23, R24, R25 –
Write CRC
Checksum to
EEPROM

EERread 4 words 8 cycles R16, R23, R24, R25 –
Read CRC
Checksum from
EEPROM

TOTAL 91 words – –

Table 2. Peripheral Usage

Peripheral Description

2 Bytes EEPROM Storing CRC Value

8 I/O Pins Output Low Byte of CRC to LEDs
8 AVR236
1143B–AVR–05/02



Printed on recycled paper.

1143B–AVR–05/02 0M

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.


	Features
	Introduction
	Theory of Operation
	Example of CRC Division

	Software Description
	Main Program
	CRC Checksum Generation
	CRC Checksum Checking

	Modifications
	Resources
	References

