
8-bit
Microcontroller

Application
Note

Rev. 1472B–AVR–05/02
AVR350: XmodemCRC Receive Utility for AVR®

Features
• Programmable Baud Rate
• Half Duplex
• 128-byte Data Packets
• CRC Data Verification
• Framing Error Detection
• OverRun Detection
• Less than 1K Bytes of Code Space
• C High-level Language Code

Introduction
The Xmodem protocol was created years ago as a simple means of having two com-
puters talk to each other. With its half-duplex mode of operation, 128-byte packets,
ACK/NACK responses and CRC data checking, the Xmodem protocol has found its
way into many applications. In fact most communication packages found on the PC
today have a Xmodem protocol available to the user.

Theory of Operation
Xmodem is a half-duplex communication protocol. The Receiver, after receiving a
packet, will either acknowledge (ACK) or not acknowledge (NACK) the packet. The
original Xmodem protocol used a standard checksum method to verify the 128-byte
data packet. The CRC extension to the original protocol uses a more robust 16-bit
CRC to validate the data block and is used here. Xmodem can be considered to be
receiver driven. That is, the Receiver sends an initial character “C” to the sender indi-
cating that it’s ready to receive data in CRC mode. The Sender then sends a 133-byte
packet, the Receiver validates it and responds with an ACK or a NACK at which time
the sender will either send the next packet or re-send the last packet. This process is
continued until an EOT is received at the Receiver side and is properly ACKed to the
Sender. After the initial handshake the receiver controls the flow of data through ACK-
ing and NAKing the Sender.

Table 1. XmodemCRC Packet Format

Byte 1 Byte 2 Byte 3 Bytes 4 - 131 Bytes 132 - 133

Start of Header Packet Number ∼(Packet Number) Packet Data 16-bit CRC
1

Definitions The following defines are used for protocol flow control.

Byte one of the XmodemCRC packet can only have a value of SOH or EOT, anything
else is an error. Bytes two and three form a packet number with checksum, add the two
bytes together and they should always equal 0xff. Please note that the packet number
starts out at “1” and rolls over to “0” if there are more than 255 packets to be received.
Bytes 4 - 131 form the data packet and can be anything. Bytes 132 and 133 form the 16-
bit CRC. The high byte of the CRC is located in byte 132.

Synchronization The Receiver starts by sending an ASCII “C” (0x43) character to the sender indicating it
wishes to use the CRC method of block validating. After sending the initial “C” the
receiver waits for either a three second time out or until a buffer full flag is set. If the
receiver is timed out then another “C” is sent to the sender and the three second time
out starts again. This process continues until the receiver receives a complete 133-byte
packet.

Receiver
Considerations

This protocol NACKs the following conditions:

1. Framing error on any byte

2. OverRun error on any byte

3. Duplicate packet

4. CRC error

5. Receiver timed out (didn't receive packet within one second)

On any NAK, the sender will re-transmit the last packet. Items one and two should be
considered serious hardware failures. Verify that sender and receiver are using the
samebaud rate, start bits and stop bits. Item three is usually the sender getting an ACK
garbled and re-transmitting the packet. Item four is found in noisy environments. And the
last issue should be self-correcting after the receiver NAKs the sender.

Table 2. Protocol Flow Control

Symbol Description Value

SOH Start of Header 0x01

EOT End of Transmission 0x04

ACK Acknowledge 0x06

NAK Not Acknowledge 0x15

C ASCII “C” 0x43
2 AVR350
1472B–AVR–05/02

AVR350
Data Flow Diagram The data flow diagram below simulates a 5-packet file being sent.

Table 3. XmodemCRC Data Flow with Errors

Sender Receiver

<---- “C”

Times Out after Three Seconds

<---- “C”

SOH 0x01 0xFE Data CRC ----> Packet OK

<---- ACK

SOH 0x02 0xFD Data CRC ----> (Line Hit during Data Transmission)

<---- NACK

SOH 0x02 0xFD Data CRC ----> Packet OK

<---- ACK

SOH 0x03 0xFC Data CRC ----> Packet OK

(ACK Gets Garbled) <---- ACK

SOH 0x03 0xFC Data CRC ----> Duplicate Packet

<---- NACK

SOH 0x04 0xFB Data CRC ----> (UART Framing Error on Any Byte)

<---- NACK

SOH 0x04 0xFB Data CRC ----> Packet OK

<---- ACK

SOH 0x05 0xFA Data CRC ----> (UART Overrun Error on Any Byte)

<---- NACK

SOH 0x05 0xFA Data CRC ----> Packet OK

<---- ACK

EOT ----> Packet OK

(ACK Gets Garbled) <---- ACK

EOT ----> Packet OK

Finished <---- ACK
3
1472B–AVR–05/02

Modifications to
Receive Protocol

Users may wish to count how many “C’s” were sent during synchronization and after “n”
number of tries abort the receive attempt.

For embedded applications it’s not mandatory to have a 128-byte packet. You could
have 64, 32, or even a 16-byte packet. The sender of course would have to comprehend
this. For users that may want to migrate to Atmel's MegaAVR series there is a version of
Xmodem that uses a 1Kbyte packet. Or you can use an external SRAM with an
AT90S4414 or an AT90S8515 to allow the increase in packet size.

If users do not wish to use the CRC method of data verification, simply replace sending
a “C” for synchronization with a NAK instead. The sender will then send only the simple
checksum of the data packet. Of course, the buffer size decreases by one and data
errors may occur. This modification would allow communication with equipment that
supports only the checksum method of data verification.

Software Routines were compiled using IAR’s “C” compiler version 1.40 with max size optimiza-
t ion. The software was tested using ProComm, DynaComm, WinComm, and
Hyperterminal at baud rates up to 115.2K bps. The receiver expects 8 start bits, 1 stop
bit, and no parity bits.

The STK200 starter kit is used as a test platform with minor, optional, modifications. A
baud rate friendly crystal was used for this code. Replace the 4.0 MHz crystal on the
STK200 starter kit with a 7.3728 MHz crystal for proper operation. If users wish to use
the default crystal then modify the init routine to properly set up the uart baud rate regis-
ter UBRR. Wait loops in the sendc and the recv_wait routines would also need
modification.

To verify proper operation of this code, the PORT D bit 2 should be connected to the
switches on the starter kit. Refer to the STK200 user manual for jumper locations and
definitions. Connect a 9-pin serial cable from a PC to the starter kit, turn on power and
use pushbutton two as a start of reception signal. Use an ICEPRO Emulator, an
AT90S4414-8PC, or an AT90S8515-8PC to execute the code.

Table 4. Routines

Name Size in Bytes Function

calcrc 60 Calculates 16-bit CRC

init 30 Low-level Hardware Initialization

main 280 Main

purge 36 Reads UART Data Register for One Second

receive 64 Main Receive Routine

recv_wait 40 Waits until Buffer Full Flag is Set or One Second Timeout

respond 44 Sends an ACK or a NACK to the Sender

sendc 88 Sends an ASCII “C” Character to the Sender until the
Buffer Full Flag is Set

timer1 28 Timer1 Interrupt

uart 80 Uart Receive Interrupt

validate_packet 155 Validates Senders Packet
4 AVR350
1472B–AVR–05/02

AVR350
Pseudo-Code

purge.c
initialize timer1 counter for a 1 second delay read uart for 1 second

receive.c
send a 'C' character to sender until receive buffer is full validate received packet send an ack or a nak to
sender

if packet was bad then wait for new good packet

while not end of transmission

wait for buffer to fill

validate the packet

send an ack or a nak to sender

recv_wait.c
initialize timer1 counter for a 1 second delay wait till buffer is full or timeout

respond.c
clear error flags

if packet was good a duplicate packet or end of transmission then

send an ack

else

purge senders uart transmit buffer

send a nack

sendc.c
initialize timer1 counter for a 3 second delay

clear error flags

while buffer is not full

send 'C' character to sender, signaling CRC mode

enable timer counter

wait for buffer full or timeout

if timed out clear error flags

restart timer

uart.c
check uart for framing or overrun errors

read byte from uart

verify first byte in receive buffer is valid

if buffer is full set buffer full flag
5
1472B–AVR–05/02

validate_packet.c
if not timed out then

if no uart framing or overrun errors then

if first character in buffer is SOH then

if second character in buffer is the next packet number

then

if second character in buffer plus the third character in buffer = 0xff

then

compute CRC on packet data

if CRC ok

then

increment packet number

packet = good

else

packet = bad

else

bad packet number checksum

else

duplicate packet number

else

if first character in buffer is EOT then

end of transmission

else

at least 1 byte had a framing or overrun error, packet is bad

else

timed-out without receiving all characters, packet is bad
6 AVR350
1472B–AVR–05/02

AVR350
Code Listing

Calcrc.c
#include "xmodem.h"

int calcrc(char *ptr, int count)

{

int crc;

char i;

crc = 0;

while (--count >= 0)

{

crc = crc ^ (int) *ptr++ << 8;

i = 8;

do

{

if (crc & 0x8000)

crc = crc << 1 ^ 0x1021;

else

crc = crc << 1;

} while(--i);

}

return (crc);

}

Init.c
#include "xmodem.h"

void init(void)

{

// portd bit 2 used to start data reception

// Pb7, Pb6, Pb5, Pb4, Pb3, Pb2, Pb1, Pb0

// O O O O O O O O

// 1 1 1 1 1 1 1 1

DDRD = 0xfb;

PORTD = 0xff;

TCCR1A = 0x00; // timer/counter 1 PWM disable

TCCR1B = 0x00; // timer/counter 1 clock disable

TIMSK |= 0x80; // enable timer counter 1 interrupt on overflow

UCR = 0x98; // enable receiver, transmitter, and receiver interrupt

// UBRR = 23; // 19.2k with 7.3728Mhz crystal

// UBRR = 11; // 38.4k with 7.3728Mhz crystal

// UBRR = 7; // 57.6k with 7.3728Mhz crystal

UBRR = 3; // 115.2k with 7.3728Mhz crystal

}

7
1472B–AVR–05/02

Main.c
#include "xmodem.h"

volatile unsigned char buf[133];

struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

//unsigned char packet_number;

// function prototypes

void receive(volatile unsigned char *bufptr1);

void purge(void);

void init(void);

void C_task main(void)

{

init(); // low level hardware initialization

_SEI(); // enable interrupts

purge(); // clear uart data register ... allow transmitter opportunity to unload its buffer

do

{

while (PIND &= 0x04); // wait until pd2 pulled low

receive(&buf[0]);

}while (1);

} // main

Purge.c
#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

// wait 1 second for sender to empty its transmit buffer

void purge(void)

{

8 AVR350
1472B–AVR–05/02

AVR350
unsigned char flush;

gl.t1_timed_out = false;

// 1 second timeout

// 7.3728MHz / 1024 = 7200 Hz

// 7200 Hz = 138.8 us

// 1 seconds / 138.8 us = 7200

// 65536 - 7200 = 58336 = e3e0

// interrupt on ffff to 0000 transition

TCNT1H = 0xe3;

TCNT1L = 0xe0; // load counter

TCCR1B = 0x05; // timer/counter 1 clock / 1024

while (!gl.t1_timed_out) // read uart until done

{

flush = UDR;

}

TCCR1B = 0x00; // disable timer/counter 1 clock

}

Receive.c
#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

// function prototypes

unsigned char validate_packet(unsigned char *bufptr, unsigned char packet_number);

void respond(unsigned char packet);

void recv_wait(void);

void sendc(void);

void receive(volatile unsigned char *bufptr1)

{

unsigned char packet; // status flag

unsigned char packet_number;

packet_number = 0x00; // xmodem packets start at 1

gl.recv_ptr = bufptr1; // point to recv buffer

sendc(); // send a 'c' until the buffer gets full

packet = validate_packet(bufptr1,packet_number); // validate packet 1

gl.recv_ptr = bufptr1; // re-initialize buffer pointer before acknowledging
9
1472B–AVR–05/02

respond(packet); // ack or nak

while (packet != good) // if we nak'ed above wait for packet 1 again

{

recv_wait();

packet = validate_packet(bufptr1,packet_number); // validate packet 1

gl.recv_ptr = bufptr1; // re-initialize buffer pointer before acknowledging

respond(packet); // ack or nak

}

while (packet != end) // get remainder of file

{

recv_wait(); // wait for error or buffer full

packet = validate_packet(bufptr1,packet_number); // validate the packet

gl.recv_ptr = bufptr1; // re-initialize buffer pointer before acknowledging

respond(packet); // ack or nak

} // end of file transmission

}

Recv_wait.c
#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

void recv_wait(void)

{

gl.t1_timed_out = false; // set in timer counter 0 overflow interrupt routine

// 1 second timeout

// 7.3728MHz / 1024 = 7200 Hz

// 7200 Hz = 138.8 us

// 1 seconds / 138.8 us = 7200

// 65536 - 7200 = 58336 = e3e0

// interrupt on ffff to 0000 transition

TCNT1H = 0xe3;

TCNT1L = 0xe0; // load counter

TCCR1B = 0x05; // timer/counter 1 clock / 1024

// wait for packet, error, or timeout

while (!gl.buffer_status && !gl.t1_timed_out);

// turn off timer - no more time outs needed

TCCR1B = 0x00; // disable timer/counter 1 clock

}

10 AVR350
1472B–AVR–05/02

AVR350
Respond.c

#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

// function prototypes

void purge(void);

void respond(unsigned char packet)

{

// clear buffer flag here ... when acking or nacking sender may respond

// very quickly.

gl.buffer_status = empty;

gl.recv_error = false; // framing and over run detection

if ((packet == good) || (packet == dup) || (packet == end))

{

while (!(USR & 0x20)); // wait till transmit register is empty

UDR = ACK; // now for the next packet

}

else

{

while (!(USR & 0x20)); // wait till transmit register is empty

purge(); // let transmitter empty its buffer

UDR = NAK; // tell sender error

}

}

Sendc.c

#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

void sendc(void) {

// 3 second timeout
11
1472B–AVR–05/02

// 7.3728MHz / 1024 = 7200 Hz

// 7200 Hz = 138.8 us

// 3 seconds / 138.8 us = 21600

// 65536 - 21600 = 43936 = aba0

// interrupt on ffff to 0000 transition

TCNT1H = 0xab;

TCNT1L = 0xa0; // load counter

TCCR1B = 0x00; // disable timer/counter 1 clock

// enable entry into while loops

gl.buffer_status = empty;

gl.t1_timed_out = false;

gl.recv_error = false; // checked in validate_packet for framing or overruns

// send character 'C' until we get a packet from the sender

while (!gl.buffer_status)

{

// tell sender CRC mode

while (!(USR & 0x20)); // wait till Data register is empty

UDR = CRCCHR; // signal transmitter that I'm ready in CRC mode ... 128 byte packets

TCCR1B = 0x05; // timer/counter 1 clock / 1024

// wait for timeout or recv buffer to fill

while (!gl.t1_timed_out && !gl.buffer_status);

// turn off timer

TCCR1B = 0x00; // disable timer/counter 1 clock

if (gl.t1_timed_out) // start wait loop again

{

gl.t1_timed_out = false;

TCNT1H = 0xab;

TCNT1L = 0xa0; // load counter ... start over

}

}

}

12 AVR350
1472B–AVR–05/02

AVR350
Timer1.c

#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

interrupt [TIMER1_OVF1_vect] void TIMER1_OVF1_interrupt(void)

{

gl.t1_timed_out = true;

}

Uart.c
#include "xmodem.h"

extern volatile unsigned char buf[133];

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

interrupt [UART_RX_vect] void UART_RX_interrupt(void)

{

// use local pointer until IAR optimizes pointer variables better in the next release

volatile unsigned char *local_ptr;

local_ptr = gl.recv_ptr;

// check for errors before reading data register ... reading UDR clears status

if (USR & 0x18) // Framing or over run error

{

gl.recv_error = true; // will NAK sender in respond.c

} // always read a character otherwise another interrupt could get generated

// read status register before reading data register

*local_ptr++ = UDR; // get char

switch (buf[0]) // determine if buffer full

{

case (SOH) :

if (local_ptr == (&buf[132] + 1))

{

gl.buffer_status = full;

local_ptr = &buf[0];
13
1472B–AVR–05/02

}

break;

/* case (EOT) :

gl.buffer_status = full;

local_ptr = &buf[0];

break;*/

default :

gl.buffer_status = full; // first char unknown

local_ptr = &buf[0];

break;

}

gl.recv_ptr = local_ptr; // restore global pointer

}

validate_packet.c
#include "xmodem.h"

extern struct global

{

volatile unsigned char *recv_ptr;

volatile unsigned char buffer_status;

volatile unsigned char recv_error;

volatile unsigned char t1_timed_out;

} gl;

// function prototypes

int calcrc(char *ptr, int count);

unsigned char validate_packet(unsigned char *bufptr,unsigned char packet_number) {

unsigned char packet;

int crc;

packet = bad;

if (!gl.t1_timed_out)

{

if (!gl.recv_error)

{

if (bufptr[0] == SOH)

{ // valid start

if (bufptr[1] == ((packet_number+1) & 0xff))

{ // sequential block number ?

if ((bufptr[1] + bufptr[2]) == 0xff)

{ // block number and block number checksum are ok

crc = calcrc(&bufptr[3],128);// compute CRC and validate it

if ((bufptr[131] == (unsigned char)(crc >> 8)) && (bufptr[132] == (unsigned char)(crc)))

{

packet_number++; // good packet ... ok to increment

packet = good;
14 AVR350
1472B–AVR–05/02

AVR350
}

} // block number checksum

} // bad block number or same block number

else if (bufptr[1] == ((packet_number) & 0xff))

{ // same block number ... ack got glitched

packet = dup; // packet is previous packet don't inc packet number

}

}

// check for the end

else if (bufptr[0] == EOT)

packet = end;

}

else

packet = err;

}

else

packet = out;

return (packet);

}

xmodem.h

#include "io8515.h"

#include "ina90.h"

#pragma language=extended

#define SOH 01

#define EOT 04

#define ACK 06

#define NAK 25

#define CRCCHR 'C'

#define true 0xff

#define false 0x0

#define full 0xff

#define empty 0x00

#define bad 0x00

#define good 0x01

#define dup 0x02

#define end 0x03

#define err 0x04

#define out 0x05
15
1472B–AVR–05/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1472B–AVR–05/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Theory of Operation
	Definitions
	Synchronization
	Receiver Considerations
	Data Flow Diagram
	Modifications to Receive Protocol
	Software
	Pseudo-Code
	purge.c
	receive.c
	recv_wait.c
	respond.c
	sendc.c
	uart.c
	validate_packet.c

	Code Listing
	Calcrc.c
	Init.c
	Main.c
	Purge.c
	Receive.c
	Recv_wait.c
	Respond.c
	Sendc.c
	Timer1.c
	Uart.c
	validate_packet.c
	xmodem.h

