
8-bit  
Microcontroller

Application 
Note

Rev. 2540A–AVR–07/03
AVR104: Buffered Interrupt Controlled EEPROM 
Writes

Features
• Flexible Multi-byte EEPROM Buffer
• Power Efficient EEPROM Access
• Access Control on Buffers
• EEPROM Buffer Rewrite

Introduction
Many applications use the built-in EEPROM of the AVR to preserve and hence restore
system information when power is removed from the system. The programming time
for storing a single byte of data in the On-chip EEPROM between 3 and 8.5 ms and
write access is therefore constrained by this write time. Typically, implementations
writing to EEPROM utilize a polling method to determine when an EEPROM write is
completed. This application note present a buffered interrupt driven approach, which
significantly increases general performance and decreases power consumption com-
pared to a polling implementation.

The improved performance and reduced power consumption are directly related to the
decrease in execution overhead required when implementing an interrupt driven
EEPROM routine versus a polling routine. When implementing polling EEPROM write
accesses all processing resources (except interrupt driven ones) are occupied by the
polling. An interrupt driven approach leaves the MCU core free to execute any code,
while “waiting” for the EEPROM Interrupt to trigger the service routine once the previ-
ous write has completed. The interrupt driver EEPROM write therefore frees up to 8.5
ms of processing time per byte written compared to an implementation using polling –
dependt on the programming time for the device used and the system clock frequency.
1



Theory of Operation The Atmel AVR devices has the capability of writing to the On-chip EEPROM through
either an interrupt driven approach or by polling. Both methods have their advantages,
but as far as overall processing performance and/or throughput is concerned the inter-
rupt driven approach is the method of choice.

Polling Method The polling subroutines, both read and write, poll the EEWE status bit to verify that the
previous write-cycle has completed. If the write-cycle is still in progress, the MCU waits
in a loop constantly polling the status bit waiting for clearance to proceed. It is also nec-
essary to check whether or not a Self-Programming operation is active. If so the routine
needs to wait until the SPM operation has been completed. If Self-Programming is not in
use, this step may be omitted. Once clearance has been granted the next EEPROM
operation may begin. The advantage to a polling implementation is the compact code
footprint while the major disadvantage is the overhead, or the time the MCU spends
waiting for an EEPROM write to be viable. A typical single byte write subroutine is listed
below for reference.

EEPROM_WR: ;EEPROM Write Sub-Routine

sbic EECR, EEWE ;If EEWE Not Clear

rjmp EEPROM_WR ;Wait Longer

 SPM_BUSY: ;(Omit if Self-Programming is Not Used)

sbic SPMCR, SPMEN ;If SPMEN Not Clear

rjmp SPM_BUSY ;Wait Longer

out EEARH, r16 ;Output Address Byte (High)

out EEARL, r17 ;Output Address Byte (Low)

out EEDR, r18 ;Output Data Byte

cli ;Disable Global Interrupts

sbi EECR, EEMWE ;Set Master Write Enable

sbi EECR, EEWE ;Set EEPROM Write Strobe

;This instruction takes four clock

;cycles.

sei ;Enable Global Interrupts

ret ;Return From Sub-Routine

Interrupt Method In the interrupt driven approach, there is no need to poll the EEWE status bit to verify
whether the previous write cycle has completed. The EEPROM Ready Interrupt is con-
stantly triggered when the EEWE status bit is cleared. It is however still necessary to
poll the SPMEN status bit if Self-Programming is used, to make sure a Self-Program-
ming operation is not currently active. The primary advantage of an interrupt driven
approach is that dedicated hardware can request processing power when needed; this
decreases the processor load.

Interrupt driven EEPROM access is made more efficient if a buffer is used: The buffer
holds the value(s) that should be written to the EEPROM and the Interrupt Routine
fetches data from the buffer. 

The complexity of the Interrupt Service Routine (ISR) is related to the number of bytes
being written to the EEPROM. This routine is rather simple for a single byte buffer, but
2 AVR104 
2540A–AVR–07/03



AVR104
when multiple bytes need to be written the routine becomes more complex. In order to
accommodate multiple bytes a buffer will need to be constructed along with a counter
variable. The counter will be responsible for keeping track of the number of locations
currently in use. The counter therefore operates as a buffer index pointer.

Buffer Construction In an effort to simplify and enhance the interrupt driven approach for multiple-byte
writes, two buffers residing in the On-chip SRAM will be constructed. The two buffers
are responsible for maintaining the address and data bytes prior to their placement in
the On-chip EEPROM. The smallest EEPROM in the ATmega family is 512 bytes, thus
requiring a 2-byte address, therefore the total size for a 1-byte EEPROM buffer is three-
bytes of On-chip SRAM.

Figure 1.  LIFO Buffers for Data and Address for EEPROM Acces

Buffer Size One of the primary considerations of implementing Buffered EEPROM Writes is the size
of the corresponding buffer. The buffer size affects performance because it is necessary
to traverse the buffer to see if the desired EEPROM address is already located in the
buffer; If so, it is necessary to update that location on a write or return the contents of
that location on a read operation.

The EEPROM also plays a role in determining the optimum buffer size. Considerations
must be made including the role of the EEPROM and the number of EEPROM bytes in
use and/or updated. If a number of bytes are being written to the EEPROM in a short
period of time, the buffer should be large enough to accommodate these requests with-
out having to actually purge locations by writing their contents to EEPROM.

It is outside the scope of this applicaiton note to provide a specific method to determine
the optimum buffer size. The buffer size needs to be assessed on an application-by-
application basis. The guidelines presented above do provide enough insight to help
determine in what range the optimum buffer size will be.

Data_n

Data Buffer

Data_1

Data_0

Address_n_Hi

Address_1_Hi

Address_0_Hi

Address_n_Low

Address Buffer

Address_1_Low

Address_0_LowBuffer Pointer 
for Count = 0

Buffer Pointer 
for Count = 0
3
2540A–AVR–07/03



Buffering Consequences When buffering the contents being written to the On-chip EEPROM, a couple of special
conditions must be considered. Primarily, it needs to be determined what happens when
a read or write of the EEPROM is needed but an updated value is contained in the buffer
and has not been written to the EEPROM memory.

Separate read and write routines need to be created which first traverses the buffer to
examine whether the desired location is contained in the buffer. If the desired location
resides in the buffer, the data would be returned or updated if a read or write command
was issued, respectively. If the location does not reside in the buffer, then a read instruc-
tion would access the EEPROM and return the requested data. However, if a write
command were issued, the data would be placed in an unused buffer location and
queued for writing to the EEPROM.

General Concerns Using 
EEPROM

The primary danger of a buffered interrupt driven approach to EEPROM writing resides
in power failures. If a system is utilizing a buffered interrupt driven approach and a
power loss occurs, the entire buffer will be lost completely since the SRAM, and thereby
the EEPROM data and address buffers, is cleared by a power loss. Therefore, the con-
sequences of a power loss should be analyzed carefully and considerations of how to
avoid loss of non-volatile data must be made.

The AVR sleep modes will not affect the contents of the buffer, as the contents of the
Register File and SRAM are unaltered when the device wakes up from sleep. However,
the EE_RDY ISR must be given additional considerations when using the AVR sleep
modes: The EE_RDY Interrupt Service Routine will wake-up the device when the MCU
is in either the Idle or ADC Noise Reduction mode, but not from other sleep modes. To
add possibility to use other sleep modes in the application in general, the sleep mode is
modified if data is placed in the EEPROM buffer. The sleep mode is returned to its previ-
ous state when the buffer is emptied. This naturally implies that the sleep mode should
not be modified while the EEPROM buffer contains data. This allows the rest of the
application to call the SLEEP instruction without considering if the mode should be
changed to meet the requirements of the EEPROM writes.

Precautions must be taken determining when to perform the actual EEPROM write
operations. It is not possible to write to the EEPROM while Self-Programming is active!
The EEPROM write should therefore be detained until Self-Programming has finished.
Furthermore, to avoid EEPROM corruption it is recommended to avoid writes during
periods of low VCC (See device datasheet for further details).

Implementation The implementation of the Buffered Interrupt Controlled EEPROM writes example is tar-
geted for the IAR Systems EWAVR v2.28A compiler. However, with only a few
modifications, the source code would be re-targeted for ImageCraft, CodeVisionAVR, or
any other C Compiler of choice.

The code example consists of two functions and an Interrupt Service Routine. The
EEPROM_PutChar() places the contents desired to be written to the EEPROM in the
buffer. The EEPROM_GetChar() function retrieves and returns the data at a desired
EEPROM location. Finally, the EE_RDY Interrupt Service Routine is responsible for han-
dling the EEPROM writes. 

The following flowcharts outline the specific details of the EEPROM_PutChar() and
EEPROM_GetChar() functions as well as the EE_RDY ISR.
4 AVR104 
2540A–AVR–07/03



AVR104
Figure 2.  EEPROM_PutChar(uint, uchar) Flowchart

When the EEPROM_PutChar() routine is entered, it first traverses the buffer looking for
the desired location. If the location already resides in the buffer, the location’s data com-
ponent is simply updated with the new value and returns to the main program. If the
location is not contained in the buffer, both the target location and data component need
to be placed in the buffer. In both cases the interrupts are disabled during the updating
to ensure that the EEPROM ISR is not accessing the buffer while it is being modified.

NoYes

No Yes

Yes

No

Disable Interrupts

EEPROM_PutChar (uint, uchar)

Location 
Already 
in Buffer

Update Buffered Data
Enable Interrupts

Is the 
Buffer Full?

Disable Interrupts

Add Location and 
Data to Buffer

Is Current 
Sleep Mode 

Idle?

Store Current Sleep Mode 
and Change to Idle

Enable EE Ready 
Interrupt

Enable Interrupts

Return
5
2540A–AVR–07/03



Prior to placing a new location and data component in the buffer, the buffer needs to be
checked for space. If space is available the contents may be added and the function
returns to main program. However, if the buffer is full an interrupt driven EEPROM write
is commenced. Once the write has completed and a buffer location is cleared, the
desired content is added and the function returns to the main program.

Further, the EEPROM_PutChar() function enables the EEPROM Ready Interrupt and
configures Sleep to operate in Idle mode prior to returning to the main routine.

Figure 3.  EEPROM_GetChar(uint) Flowchart

Once the EEPROM_GetChar() routine is entered, it first parses the buffer looking for
the specified location. If the location is found in the buffer the data corresponding to that
location is fetched and returned from the function. If the location isn’t found in the buffer,
the routine returns the fetched value from EEPROM for that specific address. The buffer
is parsed first because the buffer contains updated EEPROM data that has not been
committed to the EEPROM.

NoYes
Fetch Data from Buffer

Disable Interrupts

EEPROM_GetChar( uint )

Location
Already in

Buffer?
Enable Interrupts

Enable Interrupts

Fetch Data from EEPROM

Block EE Ready Interrupt

EEPROM
Read Acces
Permitted?

No

Yes

Release EE Ready 
Interrupt

Return Fetched Data
6 AVR104 
2540A–AVR–07/03



AVR104
Figure 4.  EE_RDY Interrupt Service Routine Flowchart

Prior to commencing any activity in the EE_RDY ISR, it is necessary to check if a Self-
Programming operation is currently active. If so, an EEPROM write cannot commence
until the Self-Programming operation has completed. (If your design does not make use
of the Self-Programming feature this step may be omitted.)

After determining an EEPROM write can occur, the simple algorithm presented below
(which is also found in the device datasheets) is followed to commence an EEPROM
write.

1. Write the new EEPROM address to EEAR.

2. Write the new EEPROM data to EEDR.

3. Write a logical one to the EEMWE bit while writing a logical zero to the EEWE bit 
in EECR.

4. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

When EEWE has been set, the MCU is halted for two cycles before the next instruction
is executed. When the write access time has elapsed, the EEWE bit is cleared by hard-
ware. Following the halt of the MCU, the ISR then empties the element of the EEPROM
buffer just written by writing $FFFF to the address and $FF to the data locations prior to
returning from the sub-routine.

EE_RDY_ISR

Is Self-
Programming 

Active?

Fetch Address and
Data from Buffer

Return

No

Yes

Set EEPROM Master Write 
Enable (EEMWE) Bit

Set EEPROM Write 
Enable (EEWE) Bit

Clear Buffer Location

Is 
Buffer 
Empty?

Disable EEPROM Interrupt 
and Restore Sleep Mode

No

Yes
7
2540A–AVR–07/03



If the buffer is emptied the EEPROM Ready Interrupt is disabled and the sleep mode is
set back to the mode that was selected prior to the calling of the EEPROM_PutChar
function when no data was present in the buffer.

Code Footprint The footprint of the code for the Buffered Interrupt Controlled EEPROM write driver is
specified in the table below.

Note: 1. Buffersize = 16

Potential 
Enhancements

The buffer used in this design is a Last In First Out (LIFO), commonly referred to as a
Stack. In the Stack Buffer method it is possible for data to remain unwritten due to the
LIFO method. The buffer could be modified creating a First In First Out (FIFO), other-
wise known as a queue. Implementing a queue buffer would ensure the older data gets
written first, however a significant increase in code overhead would be required.

Alternatively, by prioritizing the data, one could be assured that critical data gets pro-
grammed (which could aid in recovery of a power loss). A prioritization scheme could be
implemented easily by utilizing either the upper bits of the Address word (as they are
unused) or by using another type of bit-field containing the priority level. The interrupt
sub-routine in charge of committing the data to EEPROM would then write all values
with a high priority level first, following with values of decreasing priorities.

Table 1.  Memory Footprint of  Code

Memory No Optimization Size Optimized Speed Optimized

Code 440 388 418

Data 50(1) 50(1) 50(1)
8 AVR104 
2540A–AVR–07/03



 Printed on recycled paper.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland 
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2540A–AVR–07/03 xM

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof, AVR® are the registered
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of
others.


	Features
	Introduction
	Theory of Operation
	Polling Method
	Interrupt Method
	Buffer Construction
	Buffer Size

	Buffering Consequences
	General Concerns Using EEPROM


	Implementation
	Code Footprint
	Potential Enhancements

