
Assembler Manual

2-1

AVR Assembler Manual

Introduction

Welcome to the ATMEL AVR Assembler. This manual describes the
usage of the Assembler. The Assembler covers the whole range of
microcontrollers in the AT90S family.

The Assembler translates assembly source code into object code. The
generated object code can be used as input to a simulator such as the
ATMEL AVR Simulator or an emulator such as the ATMEL AVR In-
Circuit Emulator. The Assembler also generates a PROMable code
which can be programmed directly into the program memory of an
AVR microcontroller

The Assembler generates fixed code allocations, consequently no
linking is necessary.

The Assembler runs under Microsoft Windows 3.11, Microsoft
Windows95 and Microsoft Windows NT. In addition, there is an MS-
DOS command line version. The Windows version of the program
contains an on-line help function covering most of this document.

The instruction set of the AVR family of microcontrollers is only briefly
described, refer to the AVR Data Book in order to get more detailed
knowledge of the instruction set for the different microcontrollers.

To get quickly started, the Quick-Start Tutorial is an easy way to get
familiar with the ATMEL AVR Assembler.

8-Bit

Assembler

Manual

2-2 Assembler Manual

Assembler Quick Start Tutorial

This tutorial assumes that the AVR Assembler and all program files that come with it are properly
installed on your computer. Please refer to the installation instructions

Getting Started
Start the AVR Assembler. By selecting “File>>Open” from the menu or by clicking on the toolbar,
open the file “tutor1.asm”. This loads the assembly file into the Editor window. Read the program
header and take a look at the program but do not make any changes yet.

Assembling Your First File
Once you have had a look at the program, select Assemble from the menu. A second window (the
Message window) appears, containing a lot of error messages. This window will overlap the editor
window, so it is a good idea to clean up your work space on the screen. Select the Editor window
containing the program code, and select “Window>>Tile Horizontal” from the menu. It is useful to
have the Editor window larger than the Message window, so move the top of the Message window
down a bit, and follow with the bottom of the Editor window. Your screen should look like this:

 Assembler Manual

2-3

Finding and Correcting Errors
From the looks of the Message window, it seems that you have attempted to assemble a program with
lots of bugs. To get any further, the errors must be found and corrected. Point to the first error
message in the Message window (the one reported to be on line 54) and press the left mouse button.
Notice that in the Editor window, a red vertical bar is displayed all over line 54. The error message
says that only registers R0 to R31 can be assigned variable names. That is true since the AVR has
exactly 32 General Purpose working registers numbered R0-R31, and “tutor1.asm” tries to assign a
name to register 32. See the figure below.

Double click on the error message in the Message window and observe that the Editor window
becomes active while the cursor is positioned at the start of the line containing the error. Correct the
mistake by changing “r32” to “r19” in the Editor window. One down, five to go.

Now click on the next error in the list. The message “Illegal argument type or count”, tells that
something is wrong with the arguments following the compare (“cp”) instruction. Notice that the
register named “BH” is one of the arguments, which happens to be the variable we just corrected. By
clicking along on the remaining errors, it appears that the first error generated all the messages.

2-4 Assembler Manual

Reassembling
To find out whether all errors have been corrected, double click on any error (to activate the Editor
window) or click inside the Editor window before you assemble once more. If you have done it all
right up till now, the Message window will tell that you are crowned with success.

 Assembler Manual

2-5

Assembler source

The Assembler works on source files containing instruction mnemonics, labels and directives. The
instruction mnemonics and the directives often take operands.

Code lines should be limited to 120 characters.

Every input line can be preceded by a label, which is an alphanumeric string terminated by a colon.
Labels are used as targets for jump and branch instructions and as variable names in Program memory
and RAM.

An input line may take one of the four following forms:

1. [label:] directive [operands] [Comment]
2. [label:] instruction [operands] [Comment]
3. Comment
4. Empty line

A comment has the following form:

; [Text]

Items placed in braces are optional. The text between the comment-delimiter (;) and the end of line
(EOL) is ignored by the Assembler. Labels, instructions and directives are described in more detail
later.

Examples:

label: .EQU var1=100 ; Set var1 to 100 (Directive)
.EQU var2=200 ; Set var2 to 200

test: rjmp test ; Infinite loop (Instruction)
; Pure comment line

; Another comment line

Note that there are no restrictions with respect to column placement of labels, directives, comments
or instructions.

2-6 Assembler Manual

Instruction mnemonics

The Assembler accepts mnemonic instructions from the instruction set. A summary of the instruction
set mnemonics and their parameters is given here. For a detailed description of the Instruction set,
refer to the AVR Data Book.

Mnem-
onics

Operands Description Operation Flags #Clock
Note

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rd, K Add Immediate to Word Rd+1:Rd ← Rd+1:Rd + K Z,C,N,V 2

SUB Rd, Rr Subtract without Carry Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Immediate Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract Immediate with Carry Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rd, K Subtract Immediate from Word Rd+1:Rd ← Rd+1:Rd - K Z,C,N,V 2

AND Rd, Rr Logical AND Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND with Immediate Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with Immediate Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF - Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 - Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FFh - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd - 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd,Rr Multiply Unsigned R1, R0 ← Rd × Rr C 2 √

√) Not available in base-line microcontrollers (continued)

 Assembler Manual

2-7

Complete Instruction Set Summary (continued)
Mnem-
onics

Operands Description Operation Flags #Clock
Note

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Jump PC ← k None 3

RCALL k Relative Call Subroutine PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Call Subroutine PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H, 1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,H 1

CPI Rd,K Compare with Immediate Rd - K Z,C,N,V,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2

SBRS Rr, b Skip if Bit in Register Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2

SBIC P, b Skip if Bit in I/O Register Cleared if(I/O(P,b)=0) PC ← PC + 2 or 3 None 2 / 3

SBIS P, b Skip if Bit in I/O Register Set If(I/O(P,b)=1) PC← PC + 2 or 3 None 2 / 3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC+ k + 1 None 1 / 2

BRLT k Branch if Less Than, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

(continued)

2-8 Assembler Manual

Complete Instruction Set Summary (continued)
Mnem-
onics

Operands Description Operation Flags #Clock
Note

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Copy Register Rd ← Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LDS Rd, k Load Direct from SRAM Rd ← (k) None 3

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Increment Rd ← (X), X ← X + 1 None 2

LD Rd, -X Load Indirect and Pre-Decrement X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Increment Rd ← (Y), Y ← Y + 1 None 2

LD Rd, -Y Load Indirect and Pre-Decrement Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Increment Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Decrement Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 3

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Increment (X) ← Rr, X ← X + 1 None 2

ST -X, Rr Store Indirect and Pre-Decrement X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Increment (Y) ← Rr, Y ← Y + 1 None 2

ST -Y, Rr Store Indirect and Pre-Decrement Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Increment (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

(continued)

 Assembler Manual

2-9

Complete Instruction Set Summary (continued)
Mnem-
onics

Operands Description Operation Flags #Clock
Note

BIT AND BIT-TEST INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1)←Rd(n),Rd(0)←0,C←Rd(7) Z,C,N,V,H 1

LSR Rd Logical Shift Right Rd(n)←Rd(n+1),Rd(7)←0,C←Rd(0) Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)←Rd(n),C←Rd(7) Z,C,N,V,H 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)←Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

SBI P, b Set Bit in I/O Register I/O(P, b) ← 1 None 2

CBI P, b Clear Bit in I/O Register I/O(P, b) ← 0 None 2

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Two’s Complement Overflow V ← 1 V 1

CLV Clear Two’s Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep None 1

WDR Watchdog Reset None 1

2-10 Assembler Manual

The Assembler is not case sensitive.

The operands have the following forms:
Rd: R0-R31 or R16-R31 (depending on instruction)
Rr: R0-R31
b: Constant (0-7), can be a constant expression
s: Constant (0-7), can be a constant expression
P: Constant (0-31/63), can be a constant expression
K: Constant (0-255), can be a constant expression
k: Constant, value range depending on instruction. Can be a constant expression
q: Constant (0-63), can be a constant expression

 Assembler Manual

2-11

Assembler directives

The Assembler supports a number of directives. The directives are not translated directly into
opcodes. Instead, they are used to adjust the location of the program in memory, define macros,
initialize memory and so on. An overview of the directives is given in the following table.

Summary of directives:

Directive Description
BYTE Reserve byte to a variable
CSEG Code Segment
DB Define constant byte(s)
DEF Define a symbolic name on a register
DEVICE Define which device to assemble for
DSEG Data Segment
DW Define constant word(s)
ENDMACRO End macro
EQU Set a symbol equal to an expression
ESEG EEPROM Segment
EXIT Exit from file
INCLUDE Read source from another file
LIST Turn listfile generation on
LISTMAC Turn macro expansion on
MACRO Begin macro
NOLIST Turn listfile generation off
ORG Set program origin
SET Set a symbol to an expression

Note that all directives must be preceded by a period.

2-12 Assembler Manual

BYTE - Reserve bytes to a variable
The BYTE directive reserves memory resources in the SRAM. In order to be able to refer to the
reserved location, the BYTE directive should be preceded by a label. The directive takes one
parameter, which is the number of bytes to reserve. The directive can only be used within a Data
Segment (see directives CSEG, DSEG and ESEG). Note that a parameter must be given. The
allocated bytes are not initialized.

Syntax:
LABEL: .BYTE expression

Example:
.DSEG

var1: .BYTE 1 ; reserve 1 byte to var1
table: .BYTE tab_size ; reserve tab_size bytes

.CSEG
ldi r30,low(var1) ; Load Z register low
ldi r31,high(var1) ; Load Z register high
ld r1,Z ; Load VAR1 into register 1

CSEG - Code Segment
The CSEG directive defines the start of a Code Segment. An Assembler file can consist of several
Code Segments, which are concatenated into one Code Segment when assembled. The BYTE
directive can not be used within a Code Segment. The default segment type is Code. The Code
Segments have their own location counter which is a word counter. The ORG directive (see
description later in this document) can be used to place code and constants at specific locations in the
Program memory. The directive does not take any parameters.

Syntax:
.CSEG

Example:
.DSEG ; Start data segment

vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.CSEG ; Start code segment
const: .DW 2 ; Write 0x0002 in prog.mem.

mov r1,r0 ; Do something

 Assembler Manual

2-13

DB - Define constant byte(s) in program memory or EEPROM memory
The DB directive reserves memory resources in the program memory or the EEPROM memory. In
order to be able to refer to the reserved locations, the DB directive should be preceded by a label.
The DB directive takes a list of expressions, and must contain at least one expression. The DB
directive must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expression must evaluate
to a number between -128 and 255. If the expression evaluates to a negative number, the 8 bits two’s
complement of the number will be placed in the program memory or EEPROM memory location.

If the DB directive is used in a Code Segment and the expressionlist contains more than one
expression, the expressions are packed so that two bytes are placed in each program memory word. If
the expressionlist contains an odd number of expressions, the last expression will be placed in a
program memory word of its own, even if the next line in the assemby code contains a DB directive.

Syntax:
LABEL: .DB expressionlist

Example:
.CSEG

consts: .DB 0, 255, 0b01010101, -128, 0xaa

.ESEG
eeconst:.DB 0xff

DEF - Set a symbolic name on a register
The DEF directive allows the registers to be referred to through symbols. A defined symbol can be
used in the rest of the program to refer to the register it is assigned to. A register can have several
symbolic names attached to it. A symbol can be redefined later in the program.

Syntax:
.DEF Symbol=Register

Example:
.DEF temp=R16
.DEF ior=R0

.CSEG
ldi temp,0xf0 ; Load 0xf0 into temp register
in ior,0x3f ; Read SREG into ior register
eor temp,ior ; Exclusive or temp and ior

DEVICE - Define which device to assemble for
The DEVICE directive allows the user to tell the Assembler which device the code is to be executed
on. If this directive is used, a warning is issued if an instruction not supported by the specified device

2-14 Assembler Manual

occurs in the code. If the size of the Code Segment or EEPROM Segment is larger than supported by
the specified device, a warning is issued. If the DEVICE directive is not used, it is assumed that all
instructions are supported and that there are no restrictions on memory sizes.

Syntax:
.DEVICE AT90S1200 | AT90S2313 | AT90S2323 | AT90S2343 | AT90S4414

 | AT90S8515 | ATMEGA103

Example:
.DEVICE AT90S1200 ; Use the AT90S1200

.CSEG
push r30 ; This statement will generate a

; warning since the specified
; device does not have this
; instruction

DSEG - Data Segment
The DSEG directive defines the start of a Data Segment. An Assembler file can consist of several
Data Segments, which are concatenated into one Data Segment when assembled. A Data Segment
will normally only consist of BYTE directives (and labels). The Data Segments have their own
location counter which is a byte counter. The ORG directive (see description later in this document)
can be used to place the variables at specific locations in the SRAM. The directive does not take any
parameters.

Syntax:
.DSEG

Example:
.DSEG ; Start data segment

var1:.BYTE 1 ; reserve 1 byte to var1
table:.BYTE tab_size ; reserve tab_size bytes.

.CSEG
ldi r30,low(var1) ; Load Z register low
ldi r31,high(var1) ; Load Z register high
ld r1,Z ; Load var1 into register 1

 Assembler Manual

2-15

DW - Define constant word(s) in program memory or EEPROM memory
The DW directive reserves memory resources in the program memory or EEPROM memory. In order
to be able to refer to the reserved locations, the DW directive should be preceded by a label.
The DW directive takes a list of expressions, and must contain at least one expression.
The DB directive must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expression must evaluate
to a number between -32768 and 65535. If the expression evaluates to a negative number, the 16 bits
two’s complement of the number will be placed in the program memory location.

Syntax:
LABEL: .DW expressionlist

Example:
.CSEG

varlist:.DW 0,0xffff,0b1001110001010101,-32768,65535

.ESEG
eevar: .DW 0xffff

ENDMACRO - End macro
The ENDMACRO directive defines the end of a Macro definition. The directive does not take any
parameters. See the MACRO directive for more information on defining Macros.

Syntax:
.ENDMACRO

Example:
.MACRO SUBI16 ; Start macro definition

subi r16,low(@0) ; Subtract low byte
sbci r17,high(@0) ; Subtract high byte

.ENDMACRO ; End macro definition

2-16 Assembler Manual

EQU - Set a symbol equal to an expression
The EQU directive assigns a value to a label. This label can then be used in later expressions. A label
assigned to a value by the EQU directive is a constant and can not be changed or redefined.

Syntax:
.EQU label = expression

Example:
.EQU io_offset = 0x23
.EQU porta = io_offset + 2

.CSEG ; Start code segment
clr r2 ; Clear register 2
out porta,r2 ; Write to Port A

ESEG - EEPROM Segment
The ESEG directive defines the start of an EEPROM Segment. An Assembler file can consist of
several EEPROM Segments, which are concatenated into one EEPROM Segment when assembled.
The BYTE directive can not be used within an EEPROM Segment. The EEPROM Segments have
their own location counter which is a byte counter. The ORG directive (see description later in this
document) can be used to place constants at specific locations in the EEPROM memory. The
directive does not take any parameters.

Syntax:
.ESEG

Example:
.DSEG ; Start data segment

vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.ESEG
eevar: .DW 0xff0f ; Initialize one word in EEPROM

.CSEG ; Start code segment
const: .DW 2 ; Write 0x0002 in prog.mem.

mov r1,r0 ; Do something

 Assembler Manual

2-17

EXIT - Exit this file
The EXIT directive tells the Assembler to stop assembling the file. Normally, the Assembler runs until
end of file (EOF). If an EXIT directive appears in an included file, the Assembler continues from the
line following the INCLUDE directive in the file containing the INCLUDE directive.

Syntax:
.EXIT

Example:
.EXIT ; Exit this file

INCLUDE - Include another file
The INCLUDE directive tells the Assembler to start reading from a specified file. The Assembler then
assembles the specified file until end of file (EOF) or an EXIT directive is encountered. An included
file may itself contain INCLUDE directives.

Syntax:
.INCLUDE "filename"

Example:
; iodefs.asm:

.EQU sreg=0x3f ; Status register

.EQU sphigh=0x3e ; Stack pointer high

.EQU splow=0x3d ; Stack pointer low

; incdemo.asm
.INCLUDE “iodefs.asm” ; Include I/O definitions

in r0,sreg ; Read status register

LIST - Turn the listfile generation on
The LIST directive tells the Assembler to turn listfile generation on. The Assembler generates a listfile
which is a combination of assembly source code, addresses and opcodes. Listfile generation is turned
on by default. The directive can also be used together with the NOLIST directive in order to only
generate listfile of selected parts of an assembly source file.

Syntax:
.LIST

Example:
.NOLIST ; Disable listfile generation
.INCLUDE "macro.inc" ; The included files will not
.INCLUDE "const.def" ; be shown in the listfile
.LIST ; Reenable listfile generation

2-18 Assembler Manual

LISTMAC - Turn macro expansion on
The LISTMAC directive tells the Assembler that when a macro is called, the expansion of the macro
is to be shown on the listfile generated by the Assembler. The default is that only the macro-call with
parameters is shown in the listfile.

Syntax:
.LISTMAC

Example:
.MACRO MACX ; Define an example macro

add r0,@0 ; Do something
eor r1,@1 ; Do something

.ENDMACRO ; End macro definition

.LISTMAC ; Enable macro expansion
MACX r2,r1 ; Call macro, show expansion

MACRO - Begin macro
The MACRO directive tells the Assembler that this is the start of a Macro. The MACRO directive
takes the Macro name as parameter. When the name of the Macro is written later in the program, the
Macro definition is expanded at the place it was used. A Macro can take up to 10 parameters. These
parameters are referred to as @0-@9 within the Macro definition. When issuing a Macro call, the
parameters are given as a comma separated list. The Macro definition is terminated by an
ENDMACRO directive.

Note that a Macro cannot refer to another macro and that a Macro needs to be defined before it is
referred.

By default, only the call to the Macro is shown on the listfile generated by the Assembler. In order to
include the macro expansion in the listfile, a LISTMAC directive must be used. A macro is marked
with a + in the opcode field of the listfile.

Syntax:
.MACRO macroname

Example:
.MACRO SUBI16 ; Start macro definition

subi @1,low(@0) ; Subtract low byte
sbci @2,high(@0) ; Subtract high byte

.ENDMACRO ; End macro definition

.CSEG ; Start code segment
SUBI16 0x1234,r16,r17 ; Sub.0x1234 from r17:r16

 Assembler Manual

2-19

NOLIST - Turn listfile generation off
The NOLIST directive tells the Assembler to turn listfile generation off. The Assembler normally
generates a listfile which is a combination of assembly source code, addresses and opcodes. Listfile
generation is turned on by default, but can be disabled by using this directive. The directive can also
be used together with the LIST directive in order to only generate listfile of selected parts of an
assembly source file.

Syntax:
.NOLIST ; Enable listfile generation

Example:
.NOLIST ; Disable listfile generation
.INCLUDE "macro.inc" ; The included files will not
.INCLUDE "const.def" ; be shown in the listfile
.LIST ; Reenable listfile generation

ORG - Set program origin
The ORG directive sets the location counter to an absolute value. The value to set is given as a
parameter. If an ORG directive is given within a Data Segment, then it is the SRAM location counter
which is set, if the directive is given within a Code Segment, then it is the Program memory counter
which is set and if the directive is given within an EEPROM Segment, then it is the EEPROM
location counter which is set. If the directive is preceded by a label (on the same source code line), the
label will be given the value of the parameter. The default values of the Code and EEPROM location
counters are zero, whereas the default value of the SRAM location counter is 32 (due to the registers
occupying addresses 0-31) when the assembling is started. Note that the EEPROM and SRAM
location counters count bytes whereas the Program memory location counter counts words.

Syntax:
.ORG expression

Example:
.DSEG ; Start data segment
.ORG 0x37 ; Set SRAM address to hex 37

variable:.BYTE 1 ; Reserve a byte at SRAM adr.37H

.ESEG ; Start EEPROM Segment

.ORG 0x20 ; Set EEPROM location counter
eevar: .DW 0xfeff ; Initialize one word

.CSEG

.ORG 0x10 ; Set Program Counter to hex 10
mov r0,r1 ; Do something

2-20 Assembler Manual

SET - Set a symbol equal to an expression
The SET directive assigns a value to a label. This label can then be used in later expressions. A label
assigned to a value by the SET directive can be changed later in the program.

Syntax:
.SET label = expression

Example:
.SET io_offset = 0x23
.SET porta = io_offset + 2

.CSEG ; Start code segment
clr r2 ; Clear register 2
out porta,r2 ; Write to Port A

 Assembler Manual

2-21

Expressions

The Assembler incorporates expressions. Expressions can consist of operands, operators and
functions. All expressions are internally 32 bits.

Operands
The following operands can be used:

• User defined labels which are given the value of the location counter at the place they
appear.

• User defined variables defined by the SET directive
• User defined constants defined by the EQU directive
• Integer constants: constants can be given in several formats, including

a) Decimal (default): 10, 255
b) Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff
c) Binary: 0b00001010, 0b11111111

• ASCII literals: 'A','a'
• ASCII strings (will not be zero terminated): "String"
• PC - the current value of the Program memory location counter

Functions
The following functions are defined:

• LOW(expression) returns the low byte of an expression
• HIGH(expression) returns the second byte of an expression
• BYTE2(expression) is the same function as HIGH
• BYTE3(expression) returns the third byte of an expression
• BYTE4(expression) returns the fourth byte of an expression
• LWRD(expression) returns bits 0-15 of an expression
• HWRD(expression) returns bits 16-31 of an expression
• PAGE(expression) returns bits 16-21 of an expression
• EXP2(expression) returns 2^expression
• LOG2(expression) returns the integer part of log2(expression)

Operators
The Assembler supports a number of operators which are described here. The higher the precedence,
the higher the priority. Expressions may be enclosed in parentheses, and such expressions are always
evaluated before combined with anything outside the parentheses.

Logical Not
Symbol: !
Description: Unary operator which returns 1 if the expression was zero,

and returns 0 if the expression was nonzero
Precedence: 14

2-22 Assembler Manual

Example: ldi r16,!0xf0 ; Load r16 with 0x00

Bitwise Not
Symbol: ~
Description: Unary operator which returns the input expression with all bits

inverted
Precedence: 14
Example: ldi r16,~0xf0 ; Load r16 with 0x0f

Unary Minus
Symbol: -
Description: Unary operator which returns the arithmetic negation of an

expression
Precedence: 14
Example: ldi r16,-2 ; Load -2(0xfe) in r16

Multiplication
Symbol: *
Description: Binary operator which returns the product of two expressions
Precedence: 13
Example: ldi r30,label*2 ; Load r30 with label*2

Division
Symbol: /
Description: Binary operator which returns the integer quotient of the left

expression divided by the right expression
Precedence: 13
Example: ldi r30,label/2 ; Load r30 with label/2

Addition
Symbol: +
Description: Binary operator which returns the sum of two expressions
Precedence: 12
Example: ldi r30,c1+c2 ; Load r30 with c1+c2

Subtraction
Symbol: -
Description: Binary operator which returns the left expression minus the

right expression
Precedence: 12
Example: ldi r17,c1-c2 ;Load r17 with c1-c2

 Assembler Manual

2-23

Shift left
Symbol: <<
Description: Binary operator which returns the left expression shifted left a number of

times given by the right expression
Precedence: 11
Example: ldi r17,1<<bitmask ;Load r17 with 1 shifted

;left bitmask times

Shift right
Symbol: >>
Description: Binary operator which returns the left expression shifted right a number of

times given by the right expression.
Precedence: 11
Example: ldi r17,c1>>c2 ;Load r17 with c1 shifted

;right c2 times

Less than
Symbol: <
Description: Binary operator which returns 1 if the signed expression to the

left is Less than the signed expression to the right, 0 otherwise
Precedence: 10
Example: ori r18,bitmask*(c1<c2)+1 ;Or r18 with

;an expression

Less or Equal
Symbol: <=
Description: Binary operator which returns 1 if the signed expression to the

left is Less than or Equal to the signed expression to the right, 0
otherwise

Precedence: 10
Example: ori r18,bitmask*(c1<=c2)+1 ;Or r18 with

;an expression

Greater than
Symbol: >
Description: Binary operator which returns 1 if the signed expression to the

left is Greater than the signed expression to the right, 0
otherwise

Precedence: 10
Example: ori r18,bitmask*(c1>c2)+1 ;Or r18 with

;an expression

2-24 Assembler Manual

Greater or Equal
Symbol: >=
Description: Binary operator which returns 1 if the signed expression to the

left is Greater than or Equal to the signed expression to the right,
0 otherwise

Precedence: 10
Example: ori r18,bitmask*(c1>=c2)+1 ;Or r18 with

;an expression

Equal
Symbol: ==
Description: Binary operator which returns 1 if the signed expression to the

left is Equal to the signed expression to the right, 0 otherwise
Precedence: 9
Example: andi r19,bitmask*(c1==c2)+1 ;And r19 with

;an expression

Not Equal
Symbol: !=
Description: Binary operator which returns 1 if the signed expression to the

left is Not Equal to the signed expression to the right, 0
otherwise

Precedence: 9
Example: .SET flag=(c1!=c2) ;Set flag to 1 or 0

Bitwise And
Symbol: &
Description: Binary operator which returns the bitwise And between two

expressions
Precedence: 8
Example: ldi r18,High(c1&c2) ;Load r18 with an

;expression

Bitwise Xor
Symbol: ^
Description: Binary operator which returns the bitwise Exclusive Or

between two expressions
Precedence: 7
Example: ldi r18,Low(c1^c2) ;Load r18 with an expression

 Assembler Manual

2-25

Bitwise Or
Symbol: |
Description: Binary operator which returns the bitwise Or between two

expressions
Precedence: 6
Example: ldi r18,Low(c1|c2) ;Load r18 with an expression

Logical And
Symbol: &&
Description: Binary operator which returns 1 if the expressions are both

nonzero, 0 otherwise
Precedence: 5
Example: ldi r18,Low(c1&&c2) ;Load r18 with an

;expression

Logical Or
Symbol: ||
Description: Binary operator which returns 1 if one or both of the

expressions are nonzero, 0 otherwise
Precedence: 4
Example: ldi r18,Low(c1||c2) ;Load r18 with an

;expression

2-26 Assembler Manual

Microsoft Windows specifics

This section describes the features specific to WAVRASM. Only the menu items specific to the
Assembler are described. It is assumed that the user is familiar with the “Search” and “Window” menu
items. A typical editing session with the Assembler is shown in the following figure.

Opening Assembly Files
A new or existing assembly files can be opened in WAVRASM. Theoretically there is no limit on how
many assembly files which can be open at one time. The size of each file must be less than about 28K
bytes due to a limitation in MS-Windows. It is still possible to assemble files larger than this, but they
can not be edited in the integrated editor. A new editor window is created for every assembly file
which is opened.

To create a new assembly file click the button on the toolbar or choose “File>>New” (ALT-F N)
from the menu. To open an existing file click the button on the toolbar or choose “File>>Open”
(ALT-F O) from the menu.

 Assembler Manual

2-27

The Integrated Editor
When WAVRASM is finished loading a file, the text editor will be inactive. Refer to the section on
opening files on how to open a file. Right after a file is loaded into an editor window of the
Assembler, the insertion point appears in the upper left corner of the window.

Typing and Formatting Text
The insertion point moves to the right when typing. If text is written beyond the right margin, the text
automatically scrolls to the left so that the insertion point is always visible.

Moving the Insertion Point
The insertion point can be moved anywhere by moving the mouse cursor to the point where the
insertion point is wanted and click the left button.

To move the insertion point with the keyboard, use the following keys or key combinations:

To move the insertion point: Press:

to the right in a line of text Right arrow key
to the left in a line of text Left arrow key
up in a body of text Up arrow key
down in a body of text Down arrow key
to the beginning of a line of text Home
to the end of a line of text End
to the beginning of the file Ctrl+Home
to the end of the file Ctrl+End

Formatting Text
The keys in the table below describes the necessary operations to type in the text exactly as wanted.

To: Press:

insert a space Spacebar
delete a character to the left Backspace
delete a character to the right Del
end a line Enter
indent a line Tab
insert a tab stop Tab

To split a line, move the insertion point to the position where the break is wanted and press Enter.

To join two lines, move the insertion point to the beginning of the line to move, and press Backspace.
The editor joins the line with the line above.

2-28 Assembler Manual

Scrolling
If a line of text is longer or wider than can be shown at one time, the file can be scrolled by using the
scroll bars.

Editing Text
The Edit-menu contains some functions which can be of much help in editing. Text can be deleted,
moved or copied to new locations. The Undo command can be used to revert the last edit.
Transferring text to and from other windows or applications can be done via the clipboard. When text
is deleted or copied with the commands Cut or Copy, the text is placed in the Clipboard. The Paste
command copies text from the Clipboard to the editor.

Selecting Text
Before a command is selected from the Edit-menu to edit text, the text to operate on must first be
selected.

Selecting text with the keyboard:
1. Use the arrow keys to move the insertion point to the beginning of the text to select.
2. Press and hold the Shift-key while moving the insertion point to the end of the text to select.

Release the Shift-key. To cancel the selection, press one of the arrow keys.

Selecting text with the mouse:
1. Move the mouse cursor to the beginning of the text to select.
2. Hold down the left mouse button while moving the cursor to the end of the text to select. Release

the mouse button.
3. To cancel the selection, press the left mouse button or one of the arrow keys.

Replacing Text
When text is selected, it can be immediately replaced it by typing new text. The selected text is
deleted when the first new character is typed.

Replacing text:
1. Select the text to replace.
2. Type the new text.

Deleting Text:
1. Select the text to delete.
2. Press the Del key.

To restore the deleted text, press the key on the toolbar or choose “Edit>>Undo”
(Alt+Backspace) from the menu immediately after deleting the text.

 Assembler Manual

2-29

Moving Text
Text can be moved from one location in the editor by first copy the text to the Clipboard with the Cut
command, and then pasting it to its new location using the Paste command.

To move text:
1. Select the text to move.
2. Press the button on the toolbar or choose “Edit>>Cut” (Shift+Del) from the menu. The text is

placed in the Clipboard.
3. Move the insertion point to the new location.
4. Press the button on the toolbar or choose “Edit>>Paste” (Shift+Ins) from the menu.

Copying Text
If some text will be used more than once, it need not be typed each time. The text can be copied to
the Clipboard with Copy, and can then be pasted in many places by using the Paste command.

To copy text:
1. Select the text to copy.
2. Click the button on the toolbar or choose “Edit>>Copy” (Ctrl+Ins) from the menu. The text is

placed in the Clipboard.
3. Move the insertion point to the location to place the text.
4. Click the button on the toolbar or choose “Edit>>Paste” (Shift-Ins) from the menu.

Undoing an Edit
The Undo command can be used to cancel the last edit. For example, text may accidentally have been
deleted, or it has been copied to a wrong location. If the Undo command is chosen immediately after
the mistake was done, the text will be restored to what it was before the mistake.
To undo the last edit click the button on the toolbar or choose “Edit>>Undo” (Alt+Backspace)
from the menu.

2-30 Assembler Manual

Click On Errors
The Assembler has a click on error function. When a program is assembled, a message window
appears on the screen. If errors are encountered, the errors are listed in this message window. If one
of the error lines in the message window is clicked, the source line turns inverted red. If the error is in
a included file, nothing happens.

This feature is demonstrated in the following figure:

If the message window line is doubleclicked, the file containing the error becomes the active window,
and the cursor is placed at the beginning of the line containing the error. If the file containing the error
is not opened (for instance an included file), then the file is automatically opened.

Note that this function points to lines in the assembled file. This means that if lines are added or
removed in the source file, the file must be reassembled in order to get the line numbers right.

 Assembler Manual

2-31

Setting Program Options
Some of the default values of WAVRASM can be changed in the options menu. If “Options” is
selected on the menu bar, the following dialog box pops up.

In the box labeled “List-file extension” the default extension on the list file(s) is written, and in the
box labeled “Output-file extension” the default extension of the output file is written. In the box
labeled “Output file format” the type of format wanted on the output file can be selected. If the OK
button is clicked, the values are remembered in subsequent runs of the Assembler. Note that the
object file (used by the simulator) is not affected by these options; the extension of the object file is
always ‘OBJ’ and the format is always the same. If an EEEPROM Segment has been defined in the
code, the assembler will also generate a file with extension ‘EEP’ which is the initial values for the
EEPROM memory. This EEPROM initialization file is in the Generic format.

The “Wrap relative jumps” option tells the Assembler to use wrapping of addresses. This feature is
only useful when assembling for devices with 4K words of program memory. Using this option on
such devices, the relative jump and call instructions will reach the entire program memory.

The “Save before assemble” option makes the Assembler automatically save the contents of the editor
before assembling is done.

2-32 Assembler Manual

Command line version

For the MS-DOS command line version the Assembler is invoked by the command

AVRASM [-m | -i | -g][-w] input.asm output.lst output.rom

AVRASM will now read source from input.asm, produce the listfile output.lst, output.rom and the
object file input.obj. The objectfile ‘*.obj’ is used by the MS-Windows simulator.

The user can select which output format to generate by using one of the options -m (Motorola S-
record), -i (Intel Hex) or -g (Generic). The Generic file format is used by default.

The -w option tells the Assembler to use wrapping of addresses. This feature is only used when
assembling for devices with 4K words of program memory. Using this switch on these devices, the
relative jump and call instructions will reach the entire program memory.

