5-DOT DUAL LED LEVEL METER DRIVER

The KA2284/KA2285 are a monolithic integrated circuits designed for 5-dot LED level meter drivers with a built-in rectifying amplifier; it is suitable for AC/DC level meters such as VU meters or signal meters.

FEATURES

- High gain rectifying amplifier included (G_v = 26dB).
- Low radiation noise when LED turns on.
- Logarithmic indicator for 5-dot LED of bar type.
 (-10, -5, 0, 3, 6dB)
- Constant current output.
 KA2284: I_o =15mA Typ.
 KA2285: I_o =7mA Typ.
- Wide operating supply voltage range: $V_{cc} = 3.5V \sim 16V$
- . Minimum number of external parts required.

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature	l _o
KA2284	9 SIP		15 mA
KA2285		-20°C~+80°C	7 mA

*Capacitor to be omitted when used as a DC input signal meter

Fig. 1

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Amp Input Voltage	V _{1 (8-5)}	-0.5 ~ V _{CC}	' V
Pin 7 Voltage	V ₇₋₅	6	V
D Terminal Output Voltage	V _D	18	· V
Circuit Current	Icc	12	mA
D Terminal Output Current	ID	20	mA
Power Dissipation	Pp	1100	mW
Operating Temperature	T _{OPB}	−20 ~ +80	°C
Storage Temperature	T _{STG}	−40 ~ +125	•c

⁻¹¹mW/°C is decreased at higher temperature than $T_a = 25$ °C.

ELECTRICAL CHARACTERISTICS

 $(T_a = 25^{\circ}C, V_{CC} = 6V, f = 1KHz, unless otherwise specified)$

Characteristic Circuit Current		Symbol	Test Conditions	Min	Тур	Max	Unit	
		Icco	V _i = 0V		6	8.5	mA	
D Output Current	KA22	84		V _i = 0.15V	11	15	18.5	mA
	KA22	85	10		5	7	9.5	
Input Bias Current			I _{BIAS}		-1		0	μΑ
Amp Gain			G∨	V _i = 0.1V	24	26	28	dB
Comparator ON Level V _{CL (4}			V _{CL(ON)1}		- 12	- 10	- 8	
			V _{CL(ON)2}		-6	- 5	- 4	1
		V _{CL} (ON)	V _{CL(ON)3}	7		0		dB
			V _{CL(ON)4}	-	2.5	3	3.5	7.
			V _{CL(ON)5}	-	5	6	7	٦

^{*} Definition of 0dB: input voltage level when V_{CL (ON) 3} turn ON. (50mV)

TEST CIRCUIT

Fig. 2

C2: AC in, 2.2μ is used. DC in, 2.2μ is shorted

The recommended value of R at T_a (max)=60°C.

V _{cc} (V)	8~12	10 – 14	12 ~ 16
R (Ω)	47	68	91

By changing the time constant C_1 and C_2 , the response, attack and release time, may be varied. In the above application conditions, power dissipation may be operated at higher levels than the absolute maximum ratings. The wattage of R is to be determined by the total LED current and R value recommended by the R table.