

L.E.T
PIC BASIC
COMPILER

BASIC compiler for the : -

12C508, 12C509, 16C54, 16C55, 16C56, 16C57
16C71, 16F83, 16F84, 16F87x

range of PIC micro’s

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 1

Please Note.

Although every precaution has been taken with the preparation of this book to
ensure that any projects, designs or programs enclosed, operate in a correct
and safe manner. The author and publisher assume no responsibility for errors
or omissions. Neither is any liability assumed for the failure of any project, de-
sign or program, or any damage caused to equipment that it may be connected
to, or used in combination with.

Copyright Crownhill Associates. All right reserved. No part of this publication
may be reproduced, stored in a retrieval system, or distributed in any form or
by any means without the written permission of the publisher or author.

The Microchip logo and name are registered trademarks of Microchip Tech-
nologies Inc.

The L.E.T PIC BASIC Lite, Pro, and Plus are registered trademarks of Crown-
hill Associates.

Published and distributed by Crownhill Associates Ltd
First Edition December 2000.
ISBN 1-903719-05-4

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 2

Table of Contents

1 Introduction 4
1.1 LET versus the rest 4
1.2 PIC Devices 4
1.3 Packages 4
1.4 LET Pic BASIC Discussion 5
1.5 Distributing Pic BASIC LITE 5
1.6 Distributing Pic BASIC Pro and Plus 5
1.7 Contact Details 5

2 Starting Out 6
2.1 Installing the software 6
2.2 OK what now? 7
2.3 What do all the other menu options do? 8

3 Program Rules 9
3.1 Program order 9
3.2 Labels 9
3.3 General statements 9
3.4 General hints on programming 10

4 Mathematical Operators and Comparators 11
4.1 Mathematical Operators 11
4.2 Comparators 12

5 L.E.T Pic BASIC commands 13
5.1 ADIN 14
5.2 ASM 15
5.3 BSTART 16
5.4 BSTOP 17
5.5 BUSIN 18
5.6 BUSOUT 19
5.7 BUTTON 20
5.8 CLEAR (or LOW) 21
5.9 CLS 22
5.10 COUNTER 23
5.11 CURSOR 24
5.12 DATA 25
5.13 DEFINE 26
5.14 DELAYMS 27
5.15 DELAYUS 28
5.16 DEVICE 29
5.17 DIM 30
5.18 EEDATA 31
5.19 END 32
5.20 FOR….TO….NEXT 33
5.21 GOSUB….RETURN 34

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 3

Table of Contents (continued)

5.22 GOTO 35
5.23 IF….THEN 36
5.24 INCLUDE 37
5.25 INIT 38
5.26 INKEY 39
5.27 INPORTA, INPORTB, INPORTC 40
5.28 [LET] 41
5.29 MEMREAD 42
5.30 MEMWRITE 43
5.31 OUTA, OUTB, OUTC 44
5.32 PEEK 45
5.33 POKE 46
5.34 PRINT 47
5.35 READ 48
5.36 REM 49
5.37 RESTORE 50
5.38 RSIN 51
5.39 RSOUT 52
5.40 SET (or HIGH) 53
5.41 SOUND 54
5.42 SLEEP 55
5.43 STOP 56
5.44 STORE 57
5.45 SWAP 58
5.46 SYMBOL 59
5.47 TIMER 60

6 Using the Plus version of the compiler 61
6.1 Page boundaries 61
6.2 Analogue pin issues 61
6.3 Using the ADIN command 61

7 The on-board Programmer 62
7.1 Using the on-board Programmer 62

8 Universal PIC Programmer 63
8.1 Using the Programmer 63
8.2 18 pin Jumper settings 64
8.3 28 pin Jumper settings 64

9 Adapter Layouts 65
9.1 8 pin Adapter layout 65
9.2 28 pin Adapter layout 66
9.3 40 pin Adapter layout 67

10 Overview of the programming software 68
10.1 What do all the other menu options do ? 69
10.2 Learning by doing 70

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 4

1 - Introduction

The LET Pic BASIC compilers were written with simplicity in mind. Using BA-
SIC, which is probably the easiest programming language around, you can
now produce quite intricate applications for your PIC without having to learn
the ins and outs of assembler. Unlike other ‘BASIC’ compilers around, many of
which bear little resemblance to real BASIC, the authors of this version have
tried to keep as much to the original ideals of BASIC as possible. Having said
this, they have included various ‘enhancements’ for extra versatility and ease
of use.

1.1 - LET versus the rest

LET Pic BASIC provides a seamless development environment, found with no
other Pic BASIC, With LET Pic BASIC, you write, debug and compile your
code within the same Windows application, and by using a compatible pro-
grammer, just one key press Allows you to brogan and verify the resulting code
in the PIC of your choice!

The LET front end is fully Windows based. Simply specify the device at the
program beginning and the code produced will be fully compatible with that de-
vice.

It has also been noted that most compilers are incapable of producing code for
the PIC16C5x range, which of course LET Pic BASIC does. It should be noted
that because LET Pic BASIC, is as close to a true BASIC as possible, it is NOT
code compatible with the popular Parallax PICBASIC which is a proprietary
language, specific to their BASIC Stamp Parts.

1.2 - PIC Devices

The devices supported by this software are the most commonly used and the
LET Pic BASIC takes advantage of their various features e.g. The A/D con-
verter in the 16C71, the data memory eeprom area in the 16C84 and 16F84.
This manual is not intended to give you details about PIC devices So for further
information visit the Microchip website at www.microchip.com, and download
the various datasheets available. Of course, if you have purchased the LET Pic
BASIC Pro you will already have the data sheets on your CD. Let’s not forget
Pic BASIC Plus, for those of you who want to take advantage of the incredibly
cost effective 16F87x series of micro's.

1.3 - Packages

Those of you who have purchased the PRO or PLUS version can take advan-
tage of the predefined packages which can be included in your programs to
access things such as LCD, Keypads, I2C Bus and others. This makes it in-
credibly easy to get a powerful application incorporating input and output up
and running quickly.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 5

1.4 - LET Pic Basic Discussion

For your convenience we have set up a web site www.letbasic.com, where
there is a section for users of Pic BASIC to discuss the compiler, and provide
self help with programs written for LET Pic BASIC, or download sample pro-
grams. The web site is well worth a visit now and then either to learn a bit
about how other peoples code works or to request help should you encounter
any problems with programs that you have written.

1.5 - Distributing Pic BASIC LITE

Please feel free to pass the Pic BASIC LITE around, we ask only that you in-
clude this documentation or at least a link to our site where the file can be
downloaded so we know people are getting the most out of the software.
Please DO NOT alter the files in any way.

1.6 - Distributing Pic Basic PRO and PLUS

Quite simply - DON'T ! Pic BASIC Pro and Pic BASIC Plus are covered by
copyright and any unauthorised distribution, loan, selling, or copying is prohib-
ited by law.

1.7 - Contact Details

Should you need to get in touch with us for any reason our details are as fol-
lows: -

 Postal: Crownhill Associates Limited
 32 Broad Street
 Ely, Cambridgeshire
 CB4 4AH

 Telephone: UK: 01353 666709
 Int: +44 1353 666709
 Fax: UK: 01353 666710
 Int: +44 1353 666710

 Email: Sales@crownhill.co.uk
 Web Site: http://www.crownhill.co.uk
 http://www/letbasic.com

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 6

2 - Starting Out

2.1 - Installing the software

First things first- if you haven't already set the software up, you will have to use
one of two methods depending on how you received the software.

Method 1 - If you downloaded the file from the internet
Locate the file you just downloaded on your machine and double-click it. You
will need WinZip or some other extraction utility that can handle ZIP files to re-
trieve the information. In most cases you will be prompted as to where you
would like to extract the files to. Bear in mind that this is only temporary as you
will only be extracting the setup files and not the working program itself.

Once you have extracted the files you will see a program called setup or
setup.exe this is the main install application. Double-click this and follow the
on-screen prompts.

Method 2 - If you received the files on CD from us
Using Windows explorer, change to your CD and locate the directory labelled
Pic Basic Lite or Pic Basic Pro depending on which version you have. Dou-
ble-click this directory and then locate the program called setup or setup.exe
this is the main install application. Double-click this and follow the on-screen
prompts.

Note, the software is now fully installed on your hard drive so there is no need
to put the CD in when you want to run it.

Important : This software was designed to be used at a resolution of
1024x768 or higher.

A resolution of 800x600 is still usable, however, you will probably find it restrict-
ing. Try to change to as high a resolution as possible. The IDEAL resolution is
1152x864.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 7

2.2 - OK what now?

Throughout the rest of this chapter, we will be describing the Pic BASIC Pro.
The Lite and Pro are essentially the same, front-end wise, with the Pro having
a few extra options. If it is the Lite you are running, simply ignore sections re-
lated to the Pro version. Run the program by clicking Start->Programs->Pic
Basic Pro (or Lite). You will be faced with a screen that looks something like
this.

You can choose to leap in and write a program if you wish (not recommended)
or load a sample file (recommended). To load a file select File->Open or click
the open folder icon in the toolbar. For now, load in the test.bas file. Note this
program does not actually do anything but is useful to show you syntaxes, lay-
out, and allows you to play with the editor. It will compile however.
To compile it, either select Compile->Compile Basic or click on the play but-
ton (to the right of the binoculars) on the toolbar. Very quickly, a stream of asm
code is produced in the right hand window, and information about the compiled
code appears in the bottom section. In your picbasic directory now is an asm
file, which can be loaded into MPASM if you wish to use a third party PIC pro-
grammer.
However, if you have our Universal Pic Programmer, you can program the
code directly into a PIC now by connecting our Pic Programmer, inserting the
device, and then selecting Compile->Pic Programmer or clicking the Pic chip
on the toolbar. That's the basics - you can now load/edit a file, compile it, and
program it to a device if you wish

This is where
your BASIC

program will go.

Any errors/
warnings are

displayed here

The ASM code
produced, will be
displayed here

Toolbar

Menu Options

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 8

2.3 - What do all the other menu options do?

Most of the menu options are pretty much self-explanatory, but one needs
mentioning a little further: -

The File menu allows you to load, save, and create basic files.

The Edit menu enables you to cut, copy, paste, and find/replace in your basic
source file.

The Colors menu allows you to customise your window and font colors.

The Help menu allows you to have a quick-view of syntaxes while you're work-
ing and also to view version and contact info.

The most important menu is the Compile menu. Three options are provided for
compile setup options. These are: -

• Produce MPASM file - If this option is selected an assn file will he pro-

duced in your Pic BASIC directory when you compile. This asm file can be
loaded directly into MPASM file to produce PIC code suitable for a
third-party PIC programmer.

• Show op-codes -Upon compiling, the op-codes are displayed in the right

window along with the assembly code produced

• ISP download - Dump the contents directly into our In-Circuit serial pro-

grammer for testing.

The other two options in the Compile menu are compile basic which sets the
compiler in motion, and Pic Programmer, which dumps the code directly to a
PIC in our Pic Programmer.

Don't be afraid to play with the editor and menu options. You can't do any
damage. The icons on the toolbar correspond to key features in the menu - if
you are unsure as to what an icon does, simply leave the mouse pointer over it
for a second and a quick description of the icon will appear in a yellow box.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 9

3 - Program Rules

There are a few simple rules you must follow when producing a BASIC pro-
gram using the LET Pic BASIC.

3.1 - Program Order

All programs must follow the structure below in this order: -

DEVICE { device }
INCLUDE { packages }
DIM { variables }
SYMBOL { symbol }={ port.pin }
DEFINE { port }={ input/output }
INIT { packages,pins,ports }
DATA { tables }

 { … …
 … …

Your program
 … …
 … … }

END

Obviously, not all these have to be included in every program. It will depend on
your application, but when using any of the above, make sure they appear in
this order. There is some slight flexibility e.g. SYMBOL can appear before DIM
but as a rule, use the structure above.

3.2 - Labels

User defined labels MUST appear at the start of a line and be immediately fol-
lowed by a colon (:) and space. For example:

A=3

 B=4
Mylab: C=A+ B

3.3 -General Statements

Each line MUST begin with a TAB, unless it is a label (see above). Multiple
statements on a line must have a colon (:) separating them and a space either
side of the colon. For example: A=3 : B=4

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 10

3.4 - General hints on programming

• Avoid the use of too many GOTO statements, as this makes code unread-
able and harder to debug.

• Use plenty of REM statements - you may know what you are doing now but

will you still understand your code in 6 months time?

• Where possible use GOSUB routines to save PIC code space. e.g. The DE-
LAYMS command uses between 8 and 12 bytes of PIC code memory, there-
fore, calling a delay 'subroutine' more than twice will save a lot of space.

• Try to give your labels meaningful names.

• Save your program before compiling.

• Save your program regularly, there is nothing worse than losing a day’s work

because the dog pulls the cable out or you have a power cut or (unusually!)
windows crashes.

• Do not 'quick fix' bugs, always try to find out what's causing them as op-

posed to just 'patching'.

• Make use of the SYMBOL statement to give your pins meaningful names
e.g. LED is a lot more understandable than B.4

• Use the ‘ : ’ character to split two lines of code into one. For example, the

lines: -

A=MyVar
GOSUB DoMyVar

Could be implemented on one line like this: -

A=MyVar : GOSUB DoMyVar

• NOTE. Command lines may not exceed 100 characters in length. If the
maximum amount is exceeded, then unpredictable error messages will ap-
pear.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 11

4 - Mathematical Operators and Comparators

4.1 - Mathematical Operators

 LET Pic BASIC supports the following mathematical operators: -

Operator Description
+ Add
- Subtract
* Multiply
/ Divide
& Bitwise AND
| Bitwise OR
! Bitwise XOR

<< Shift Left
>> Shift Right

All calculations are 8-bit integer types, any calculation that produces a result
larger than 255 will not yield a correct result.

 Add, Subtract, and Multiply need no explanation, we hope!
Divide will remove anything after the decimal point. e.g. 6/4 will return 1
AND, OR, and XOR perform a bit operation corresponding to the following
logic tables: -

Shift Left and Shift Right, shift a value either way by a specific number of bits,
to create a new value. For example:

 A=12 ‘ A contains the value 12, which is 00001100 in binary

A=A<<4 ‘ A is shifted four times to the left, which leaves 11000000 in
‘ binary. Variable A now contains the value 192.

A=A>>3 ‘ A is shifted three times to the right, which now leaves
‘ 00011000 in binary.

 ‘ Variable A now contains the value 24

AND
A B Result
0 0 0
0 1 0
1 0 0
1 1 1

OR
A B Result
0 0 0
0 1 1
1 0 1
1 1 1

XOR
A B Result
0 0 0
0 1 1
1 0 1
1 1 0

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 12

4.1 - Comparators

 When using the IF statement, the following comparators are available: -

Comparator Description
= Is equal to
< Is less than
> Is greater than
<> Is not equal to
<= Is less than OR equal to
>= Is greater than OR equal to
=< Is less than OR equal to
=> Is greater than OR equal to

It can be seen from the above table that <= and =< are the same
comparator. This is also true for >= and =>.

Examples :

 Assuming A=3, B=5, C=5, and D=10

IF A < B THEN { code } ‘ A is less than B so: TRUE, Code performed
IF A > D THEN { code } ‘ A is not greater than D so: FALSE, Code not performed
IF B = C THEN { code } ‘ B is equal to C so: TRUE, Code performed
IF C >= B THEN { code } ‘ C is equal to B so: TRUE, Code performed
IF A <= B THEN { code } ‘ D is not less than or equal A: FALSE, Code not performed

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 13

5 - L.E.T Pic BASIC commands
Commands in bold apply to the LET Pic BASIC Pro only.
5.1 ADIN
5.2 ASM
5.3 BSTART
5.4 BSTOP
5.5 BUSIN
5.6 BUSOUT
5.7 BUTTON
5.8 CLEAR (or LOW)
5.9 CLS
5.10 COUNTER
5.11 CURSOR
5.12 DATA
5.13 DEFINE
5.14 DELAYMS
5.15 DELAYUS
5.16 DEVICE
5.17 DIM
5.18 EEDATA
5.19 END
5.20 FOR….TO….NEXT….[STEP]
5.21 GOSUB….RETURN
5.22 GOTO
5.23 IF….THEN
5.24 INCLUDE
5.25 INIT
5.26 INKEY
5.27 INPORTA , INPORTB , INPORTC
5.28 [LET]
5.29 MEMREAD
5.30 MEMWRITE
5.31 OUTA , OUTB , OUTC
5.32 PEEK
5.33 POKE
5.34 PRINT
5.35 READ
5.36 REM
5.37 RESTORE
5.38 RSIN
5.39 RSOUT
5.40 SET (or HIGH)
5.41 SLEEP
5.42 SOUND
5.43 STOP
5.44 STORE
5.45 SWAP
5.46 SYMBOL
5.47 TIMER

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 14

5.1 ADIN

Syntax : { variable } = ADIN({ channel number })

Overview : Read the value of the Analogue to Digital Converter on the 16C71.

Operators : variable is a user defined variable.

channel number must be a numeric value between 0 and 3

Example : ‘ Retrieve the value of channel 3

‘ of the A to D Converter and place in variable A.

INCLUDE A2D
INIT A2D
DIM A
DEFINE PortA=00001000 ‘ Configure AN3 (PortA.3) as an input
A=ADIN (3) ‘ Place the conversion into variable A

Notes : This command only applies to the PIC16C71. Thus, it is NOT avail-

able in the PLUS version of the compiler.

 Although the PIC powers up with the port pins set as inputs, it is al-

ways wise to manually configure the ports with the DEFINE command

If multiple conversions are being implemented, the a small delay
should be used after the ADIN command. This allows the ADC’s in-
ternal capacitors to discharge fully: -

Again: A=ADIN (3) ‘ Place the conversion into variable A
PAUSEUS (1) ‘ pause for 4us
GOTO Again ‘ Read the ADC forever

Package : The A2D package must first be loaded and initialised before this

command is available.

See also : INCLUDE, INIT

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 15

5.2 ASM

Syntax : ASM { ……

assembler mnemonics
 …… }

or

ASM { assembler mnemonic }

Overview : Incorporate inline assembler in the BASIC code.

Operators : assembler mnemonics refer to assembler commands for the selected

device. This goes outside the scope of the manual so check Microchip
data sheets for more information.

Notes : Requires MPASM (from Microchip technologies) to assemble the

inline mnemonics for the LITE version. The PRO has a built-in as-
sembler therefore MPASM is not required.

 If a single assembler instruction is required i.e. NOP. Then the mne-

monic may be surrounded by the curly brackets: -

 ASM { NOP }

 ASM { CLRWDT }

 A space should be left between the curly brackets and the mnemonic.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 16

5.3 BSTART

Syntax : BSTART

Overview : Part of the standard interface to the I2C bus, which sends a START

condition across the I2C bus.

Notes : The I2C commands use fixed pins for the SDA and SCL connections: -

PortA bit 0 is used for SDA
PortA bit 1 is used for SCL

When the I2CBUS commands are used, PortA bits 0 and 1 are auto-
matically configured as outputs.

If serial commands are used on the same port (i.e. PortA) then the
INIT 12CBUS command must be placed after the INIT SERIAL com-
mand.

Package : The I2CBUS package must first be loaded before this command is

available:-

 INCLUDE I2CBUS

See also : BSTOP, BUSIN, see BUSOUT for suitable circuit, INIT, INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 17

5.4 BSTOP

Syntax : BSTOP

Overview : Part of the standard interface to the I2C bus, which sends a STOP

condition across the I2C bus.

Notes : The I2C commands use fixed pins for the SDA and SCL connections: -

PortA bit 0 is used for SDA
PortA bit 1 is used for SCL

When the I2CBUS commands are used, PortA bits 0 and 1 are auto-
matically configured as outputs, regardless of the value used in the
DEFINE command.

If serial commands are used on the same port (i.e. PortA) then the
INIT 12CBUS command must be placed after the INIT SERIAL com-
mand.

Package : The I2CBUS package must first be loaded before this command is

available:-

 INCLUDE I2CBUS

See also : BSTART, BUSIN, see BUSOUT for suitable circuit, INIT, INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 18

5.5 BUSIN

Syntax : { variable } = BUSIN

Overview : Receives a byte from the I2C bus.

Operators : variable is a user defined variable.

Example : ‘ Receive a byte from the I2C bus

‘ and placed it into the variable A.

INCLUDE I2CBUS
DIM A
INIT I2CBUS
A=BUSIN

Notes : The I2C commands use fixed pins for the SDA and SCL connections: -

PortA bit 0 is used for SDA
PortA bit 1 is used for SCL

When the I2CBUS commands are used, PortA bits 0 and 1 are auto-
matically configured as outputs, regardless of the value used in the
DEFINE command.

If serial commands are used on the same port (i.e. PortA) then the
INIT 12CBUS command must be placed after the INIT SERIAL com-
mand.

Package : The I2CBUS package must first be loaded before this command is

available:-

 INCLUDE I2CBUS

See also : BSTART, BTOP, see BUSOUT for suitable circuit, INIT, INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 19

5.6 BUSOUT

Syntax : BUSOUT ({ number / variable / expression })

Overview : Output a number, variable, or expression to the I2C bus.

Example : ‘ Send the contents of variable A+36 across the I2C bus.

INCLUDE I2CBUS
DIM A
INIT I2CBUS
A=25
BUSOUT (36+A)

Notes : The I2C commands use fixed pins for the SDA and SCL connections: -

PortA bit 0 is used for SDA
PortA bit 1 is used for SCL

When the I2CBUS commands are used, PortA bits 0 and 1 are auto-
matically configured as outputs.

If serial commands are used on the same port (i.e. PortA) then the
INIT 12CBUS command must be placed after the INIT SERIAL com-
mand.

Package : The I2CBUS package must first be loaded before this command is

available:-

See also : BSTOP, BSTART, BUSIN

A typical use for the I2C commands is for interfacing with serial eeproms. The above
diagram shows the connections to the I2C bus of a 24C02 serial eeprom.

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pF

C1
10uF

C2
0.1uF

R1
4.7k

+5 Volts

C3
22pF

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

VCC
WP

SCL
A1
A2

VSS

24C02

7

8

A0

SDA

1

2

3

4

6

5

R2-R3
4.7k

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 20

5.7 BUTTON

Syntax : BUTTON { port.bit / symbol }

Overview : Program execution is halted while the software waits for the pin used

in BUTTON to invert its current state i.e. high to low or low to high

Operators : port can be A, B, or C

bit is the pin to await inversion
symbol is a symbolic representation of the pin

Example : DEFINE PORTB = 11111101 ‘ Set PORTB’s direction

SYMBOL LED=B.1 ‘ Assign the LED to PortB Bit-1
SYMBOL KEY=B.0 ‘ Assign the push switch to PortB Bit-0

Loop: HIGH LED ‘ Illuminate the LED
BUTTON KEY ‘ Wait for a keypress
LOW LED ‘ Then extinguish the LED
BUTTON B.0 ‘ Wait for another keypress
GOTO LOOP ‘ And do it all over again

 END ; The mandatory END statement

Notes : The pin to be used for BUTTON must have been previously defined

as an input

The above diagram shows one possible connection of a push switch
to the PIC. A logic low will be produced by activating the switch. The
47k resistor stops the pin from floating while the switch is open. This
may be eliminated if the internal PortB pullup resistors are enabled.
The 1k resistors eliminates any shorts occurring if the switch is inad-
vertently closed while the pin is configured as an output.

See also : DEFINE, SYMBOL

+5V

0V

47k

1k

To Pin of the
PIC

Push
Switch

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 21

5.8 CLEAR (or LOW)

Syntax : CLEAR (or LOW) { port.bit / symbol }

Overview : Place a port pin in the logic low state - i.e. 0

Operators : port can be A, B, or C

bit is the bit number to be cleared to 0
symbol can be a symbolic representation of a port pin

Example : ‘ Bit 2 on port B is CLEARed to 0. Bit 4 on port B (symbolised by the

‘ name LED) is SET to 1. Bit 3 on port B is CLEARed to 0.

SYMBOL LED=B.4 ‘ Assign the LED to PortB Bit-4
CLEAR B.2 ‘ Pull LOW PortB Bit-2
SET LED ‘ Set HIGH PortB Bit-4
LOW B.3 ‘ Pull LOW PortB Bit-3

Notes : There is no difference between the CLEAR and LOW commands.

The pin to be used for CLEAR or LOW must have been previously
defined as an output

See also : SET, DEFINE, SYMBOL

The above diagram shows the connection of an LED to any of the
pins of a PIC. A resistor must be used in series with the LED to limit
the current supplied to it.

Connect to
specified
PIC pin

470

LED

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 22

5.9 CLS

Syntax : CLS

Overview : Part of the LCD package that clears the LCD and places the cursor at

the home position i.e. column 1, row 1

Example : DEVICE 16F84 ; Use the PIC16F84 micro

INCLUDE LCD ; Load the LCD routines
INIT LCD,PortB ; Place the LCD on PortB
CLS ; Clear the LCD
PRINT "HELLO" ; Display the word “HELLO” on the LCD
CURSOR 1,2 ; Move the cursor to line 2, position 5
PRINT "WORLD" ; Display the word “WORLD” on the LCD
END ; The mandatory END statement

Firstly the LCD is cleared using the CLS command, which also places
the cursor at the home position i.e. column 1, row 1. Next, the word
HELLO is displayed in the top left corner. The cursor is then moved to
column 1 row 2, and the word WORLD is displayed.

Notes : The connection of the LCD uses fixed pins. If PortB is chosen then

the LCD’s data lines connect to PortB bits 4..7. The LCD’s RS line
connects to PortB bit-3, and the LCD’s EN line connects to PortB bit-
2. If PortC is chosen then the same bits of the port apply. The dia-
gram below illustrates a typical connection of an LCD to PortB.

Package : The LCD package must first be loaded then initialised before this

command is available. See above example.

See also : CURSOR, PRINT, INIT, INCLUDE

RB7VDD

RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pF

C1
10uF

C2
0.1uF

R1
4.7k

5 Volts

C3
22pF

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

INTELLIGENT LCD

MODULE

D
B

7
D

B
6

D
B

5

D
B

4
D

B
3

D
B

2
D

B
1

D
B

0
E

N

R
/W

R
S V
o

V
dd V
ss

Contrast
47K

linear

+5V

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 23

5.10 COUNTER

Syntax : COUNTER { on/off },{ high/low }

{ variable }=COUNTER

Overview : Clears and then enables a counter in from the RTCC pin on a PIC

Use { variable }=COUNTER to read.

Operators : on – clear and enable the counter

off – stop the counter
high – counter will increment on high to low transition
low – counter will increment on low to high transition
variable is a user-defined variable

Example : ‘ Flashes an LED on and off

‘ Use RA4 as counter input pin
‘ LED on / off every 128 counts
‘ LED on PortB.0

DEVICE 16F84 ; Use the PIC16F84 micro DIM A,B
DEFINE PortB=11111110 ; Configure PortB’s direction
DEFINE PortA=11111111 ; Configure PortA’s direction
SYMBOL LED=B.0 ; Assign the LED to PortB Bit 0
COUNTER On,High

Loop: A=COUNTER ; Variable A now contains the Count
IF A>128 then SET LED ; If A> than 128 then illuminate the LED
IF A<128 then CLEAR LED ; If A> than 128 then extinguish the LED
GOTO Loop ; Do it indefinitely

 END ; The mandatory END statement

See also : DEFINE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 24

5.11 CURSOR

Syntax : CURSOR { command / column,row }

Overview : Move the cursor position on the LCD to a location corresponding to

column,row or moves it using a command

Operators : command can be one of the following:

• LEFT - move the cursor left a character
• RIGHT - move the cursor right a position
• HOME - move the cursor to the top left i.e. column 1, row 1

column is the column number from 1 to maximum columns
row is the row number from 1 to maximum rows

Example : DEVICE 16F84 ; Use the PIC16F84 micro

INCLUDE LCD ; Load the LCD routines
INIT LCD,PortB ; Place the LCD on PortB
CLS ; Clear the LCD
PRINT "HELLO" ; Display the word “HELLO” on the LCD
CURSOR 1,2 ; Move the cursor to line 2, position 1
PRINT "WORLD" ; Display the word “WORLD” on the LCD
END ; The mandatory END statement

Firstly the LCD is cleared using the CLS command, which also places
the cursor at the home position i.e. line 1, position 1. Next the word
HELLO is displayed in the top left corner. The cursor is then moved to
line 2 position 1 and the word WORLD is displayed.

Package : The LCD module must first be loaded then initialised before this

command is available. See above example.

See also : INIT, INCLUDE , PRINT, see CLS for LCD connection circuit

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 25

5.12 DATA

Syntax : DATA { alphanumeric data }

Overview : DATA defines a table of alphanumeric data.

Operators : alphanumeric data can be any alphabetic character or string enclosed

in quotes (“) or numeric data without quotes.

Example : DIM I

DATA 5,8,”fred”,12
RESTORE
READ I ‘ Variable I will now contain the value 5
READ I ‘ Variable I will now contain the value 8
‘ Pointer now placed at location 4 in our data table i.e. “r”
RESTORE 3
‘ I will now contain the value 114 i.e. the ‘r’ character in decimal
READ I

The data table is defined with the values 5,8,102,114,101,100,12 as
“fred” equates to f:102, r:114, e:101, d:100 in decimal. The table
pointer is immediately restored to the beginning of the table. This is
not always required but as a general rule it is a good idea to prevent
table reading from overflowing.
The first READ I, takes the first item of data from the table and incre-
ments the table pointer. The next READ I therefore takes the second
item of data. RESTORE 3 moves the table pointer to the fourth loca-
tion (first location is pointer position 0) in the table - in this case where
the letter ‘r’ is. READ I now retrieves the decimal equivalent of ‘r’
which is 114.

Notes : Alphanumeric data is allowed in LET Pic BASIC Pro. Numeric only in

the LITE version.
DATA tables must be declared AFTER any DIM statements, but BE-
FORE any INIT commands. Attempts to read past the end of the table
will result in errors and unpredictable results.
Only one DATA statement is allowed per program. If the alphanu-
meric contents of the DATA statement will not fit on one line then the
extra information must be placed directly below the DATA statement
after a trailing comma: -

 DATA “HELLO” ,
 “WORLD”

 is the same as: -

 DATA “HELLO WORLD”

See also: READ , RESTORE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 26

5.13 DEFINE

Syntax : DEFINE { port}={ input / output }

Overview : DEFINE a port using 8 bits to represent inputs or outputs for each bit

Operators : port can be PortA, PortB, or PortC

input is represented by a 1
output is represented by a 0

Example : ‘ PortB is defined as bits-7,6,5,4 as inputs and bits-3,2,1,0 as outputs

DEFINE PortB=11110000

Notes : Even though PortA does not use all 8 bits you MUST still use an 8-bit
definition.

The first number in the DEFINE refers to bit-7 of the specified port.
DEFINE must be placed after any DIM statements and before any
DATA tables.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 27

5.14 DELAYMS

Syntax : DELAYMS ({ length })

Overview : Delay execution for length x milliseconds

Operators : length is a variable or number

Example : DIM B

B=50
DELAYMS (100)
DELAYMS (B)

Notes : The delay commands assume a crystal of 10MHz. Therefore you will

need to adjust the length for other crystal frequencies. For example: -

DELAYMS (100) will delay 100ms on a 10MHz oscillator
DELAYMS (40) will delay 100ms on a 4MHz oscillator

The compiler uses inline code for the DELAYMS command, therefore,
each time the command is used, 9 bytes of memory are used up. This
can accumulate to quite a bit of memory if more than one DELAYMS
command is used. The best solution is to place the DELAYMS com-
mand within a subroutine: -

Pause: DELAYMS (DELAY)
 RETURN

The amount of time to delay (in ms) is placed into the variable DE-
LAY, then a call is made to the subroutine PAUSE.

If the 16C5X range of PICs are used, care should be taken to ensure
that no more than 2 subroutines are being used at the same time, as
these devices only have a 2 level deep STACK.

See also : DELAYUS

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 28

5.15 DELAYUS

Syntax : DELAYUS ({ length })

Overview : Delay execution for length x microseconds

Operators : length is a variable or number

Example : DIM B

B=50
DELAYUS (100)
DELAYUS (B)

Notes : The delay commands assume a crystal of 10MHz. Therefore you will

need to adjust the length for other crystal frequencies. For example: -

DELAYUS (100) will delay 100us on a 10MHz oscillator
DELAYUS (40) will delay 100us on a 4MHz oscillator

The compiler uses inline code for the DELAYUS command, however,
fewer bytes of memory are used for each DELAYUS command,
therefore, very little saving would be accomplished by placing the
DELAYUS command into a subroutine, as in the case of DELAYMS.

The minimum resolution using a 4MHz crystal is 4us. If smaller delays
are required, then inline assembler is used : -

 ASM { Clrwdt } ‘ Delay for 1us using a 4MHz crystal

 ASM { ‘ Delay 2us using a 4MHz crystal

Clrwdt
 Clrwdt
 }

Using the CLRWDT (Clear Watchdog Timer) instruction is recom-
mended over the NOP instruction, as the former will allow the watch-
dog timer to be enabled at programming time.

See also : DELAYMS

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 29

5.16 DEVICE

Syntax : DEVICE { device number }

Overview : DEVICE is used to inform the compiler which device code must be

produced.

Operators : device number takes one of the following values :

• 16C54
• 16C55
• 16C56
• 16C57
• 16C71
• 16C84
• 16F83
• 16F84
• 12C508
• 12C509

Notes : DEVICE must be the first command placed in the program.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 30

5.17 DIM

Syntax : DIM { variable }

Overview : All user-defined variables must be declared using the DIM statement.

Operators : variable can be any alphabetic character or string.

Example 1 : DIM A,B,MyVar,fred,cat,zz

Example 2 : DIM A
 DIM B
 DIM MyVar

Notes : DIM must be placed near the beginning of the program. Any refer-

ences to variables not declared or before they are declared will pro-
duce errors.

Variables are all 8-bits in length, which means that any single variable
may contain the value 0 to 255.

Do not use variable names more than 12 characters long.

Variable names should be purely alphabetic. Alphanumeric variable
names are not allowed. i.e.

DIM Fred is VALID

DIM Fred2 is INVALID

Variable names are case insensitive, which means that the variable: -

DIM MyVaR

Is the same as…

DIM MYVAR

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 31

5.18 EEDATA

Syntax : { variable }=EEDATA ({ address })

Overview : Read data from the internal eeprom of a 16C84 or 16F84

Operators : variable is a user-defined variable

address can be a user-defined variable or numeric value, and is the
location in the eeprom from 0-63

Example : INCLUDE EEPROM

INIT EEPROM
DIM A,B,C
C=4
A=EEDATA (10)
B=EEDATA (C+8)

Variable A contains the value of data at position 10 in the eeprom
Variable B contains the value of data at position 12 in the eeprom

Notes : This command only applies to the 16C84 or 16F84

Package : The EEPROM module must first be loaded and initialised before the

EEDATA command is available: -

 INCLUDE EEPROM
 INIT EEPROM

See also : STORE, INIT, INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 32

5.19 END

Syntax : END

Overview : The END statement stops compilation of source. Nothing in the BA-

SIC source after an END is compiled.

Notes : END stops the PIC processing by putting it into a continuous loop.

The port pins remain the same but the device is NOT in low power
mode.

See also : STOP, SLEEP

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 33

5.20 FOR….TO….NEXT

Syntax : FOR {variable} = {count} TO {endcount}

{code body}
NEXT {variable}

Overview : The FOR….NEXT loop is used to execute a statement or series of

statements many times.

Operators : variable refers to an index variable used for the sake of the loop. This

index variable can itself be used in the code body but beware of alter-
ing its value within the loop as this can cause many problems.
count is the start number of the loop, which will initially be assigned to
the variable. This does not have to be an actual number - it could be
the contents of another variable.
endcount is the number on which the loop will finish. Note that this
number will be used in the loop before exiting. This does not have to
be an actual number - it could be the contents of another variable.

Example : A=0 : B=1

FOR X=B TO 5
FOR Y=1 TO 10
A=A+1
NEXT Y
NEXT X
This shows how loops can be embedded. The Y loop will be per-
formed 5 times because it is contained within the X loop which goes
from the contents of B (i.e. 1) to 5. Thus, after the first pass, A will
contain 10. The second pass will change A to 20, the third to 30, the
fourth to 40 and the loops will finish with A containing 50.

Notes : Each NEXT variable must be the same variable as the FOR variable

that precedes it when embedding loops.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 34

5.21 GOSUB….RETURN

Syntax : GOSUB { label }

…
…
RETURN

Overview : GOSUB jumps the program to a defined label and continues execu-

tion from there. Once the program hits a RETURN command the pro-
gram returns to the GOSUB that called it and continues execution
from that point.

Operators : label is a user-defined label placed at the beginning of a line which

must have a colon ‘:’ directly after it.

Example : GOSUB SubA

GOSUB SubB
STOP

SubA: { subroutine A code
……
……
}
RETURN

SubB: { subroutine B code
……
……
}
RETURN
END

This example gives a good idea of structuring your programs. By plac-
ing the subroutines at the end of the program with a STOP before
them, you are ensuring that they can only ever be called by a GOSUB
command as program execution will never reach them naturally. The
first subroutine is called and executed. The RETURN command
sends execution back and then the second subroutine is called. This
is extremely useful for routines that need to be called many times
from different parts of the program.

Notes : Make sure labels are placed at the beginning of a line with no spaces

in front and have a colon ‘:’ directly after.
Labels must only contain alphabetic characters.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 35

5.22 GOTO

Syntax : GOTO { label }

Overview : GOTO jumps the program to a defined label and continues execution

from there.

Operators : label is a user-defined label placed at the beginning of a line which

must have a colon ‘:’ directly after it.

Example : IF A=3 THEN GOTO Jumpover

{ code here executed only if A<>3
……
……
}
Jumpover: {continue code execution}

In this example, if A=3 then the program jumps over all the code be-
low it until it reaches the label jumpover where program execution
continues as normal.

Notes : Make sure labels are placed at the beginning of a line with no spaces

in front and have a colon ‘:’ directly after them.
Labels must only contain alphabetic characters: -

LABEL: is VALID

LABEL1: is INVALID

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 36

5.23 IF….THEN

Syntax : IF { comparison } THEN { expression }

Overview : Evaluates the comparison and, if it fulfils the criteria, executes ex-

pression. If comparison is not fulfilled the expression is ignored

Operators : comparison is composed of variables, numbers and comparators as

mentioned in section 4.2
expression is the statement to be executed should the comparison ful-
fil the IF criteria

Example 1 : SYMBOL LED=B.4

A=3
SET LED
IF A>4 THEN CLEAR LED

In the above example, A is not greater than 4 so the IF criteria isn’t
fulfilled. Consequently, the CLEAR LED statement is never executed
leaving the state of port pin B.4 high.

Example 2 : A=4 : B=4 : C=10

IF A>=B THEN C=C*2

In example 2, variable A is not greater than B but it is equal to it, thus
the IF criteria is fulfilled. Consequently, variable C is multiplied by 2.

Example 3 : IF INPORTA & 1=1 THEN X=X | 2

Example 3 illustrates a method for testing individual bits of a port. If
bit-1 of PortA is equal to 1 (logic high) then bit-1 of variable X is set.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 37

5.24 INCLUDE

Syntax : INCLUDE { package }

Overview : Use the INCLUDE statement to assign variables and information from

our predefined packages.

Operators : package can be any one or more of the following : -

• LCD
• KEYPAD
• A2D
• I2CBUS
• EEPROM
• SERIAL

Example : INCLUDE LCD,KEYPAD

Includes the routines required for LCD and KEYPAD operation.

Notes : INCLUDE must be placed after the DEVICE statement. If you include

packages but fail to use them, you are wasting valuable memory.

See also : INIT

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 38

5.25 INIT

Syntax : INIT { package },{ extra info }

Overview : Use the INIT to assign code from our predefined packages to your
program.

Operators : extra info depends on which package you are using for INIT - this is

summarised below :

Package Extra info Required
LCD PortB or PortC
KEYPAD PortB or PortC
A2D None
I2CBUS None
EEPROM None
SERIAL RSin pin, RSout pin, [Dtr] optional

Example : INCLUDE LCD,KEYPAD,A2D,I2CBUS,EEPROM,SERIAL

SYMBOL Rin=A.0
SYMBOL Rout=A.1
SYMBOL Dtr=A.2
INIT LCD,PortB
INIT KEYPAD,PortC
INIT SERIAL Rin,Rout,Dtr

 INIT I2CBUS
 INIT A2D

Notes : When using INIT with the serial package you do NOT use a comma

after the word serial - you use a SPACE instead.

A DEFINE command is required before the A2D, I2CBUS, and SE-
RIAL INIT commands are used. The DEFINE command is not re-
quired for the LCD, EEPROM, or KEYPAD INIT commands

See also : INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 39

5.26 INKEY

Syntax : { variable } = INKEY

Overview : Wait for key press on keypad and place value in variable

Operators : variable is a user defined variable

Example : INCLUDE KEYPAD

INIT KEYPAD,PortB ‘ Assign the keypad to PortB
DIM A
A=INKEY

Notes : The keypad connection uses fixed pins for the Row and Column lines.

These must be connected to PortB or PortC (if available).

Package : The KEYPAD package must first be loaded and initialised, before the

INKEY command is available. See the above example.

See also : INIT, INCLUDE

The above diagram illustrates a typical connection of a 12-button keypad to a
PIC16F84. If a 16-button type is used, then COLUMN 4 will connect to PortB.7 (RB7).

RB7VDD

RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pf

C1
10uf

C2
0.1uf

R1
4.7k

+5 Volts

C3
22pf

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0v

1 2 3

654

7 8 9

0 #*

R2-R5
470

COLUMNS

R
O
W
S

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 40

5.27 INPORTA , INPORTB , INPORTC

Syntax : { variable } = INPORTA or INPORTB or INPORTC

Overview : Get data from PortA, PortB, or PortC and place into variable

Operators : variable is a user defined variable

Example 1 : ‘ Place the 8-bit contents of PortA into the variable X

DEFINE PortA=11111111
X=INPORTA

Example 2 : ‘ Place the contents of PortB, bitwise anded with 4, into variable Y
 ‘ This has the result of masking all but bit-3 of the port

DEFINE PortB=11001111
Y=INPORTB & 4

Notes : Before the INPORT command is used, the port’s direction should be

configured using the DEFINE command.

See also : OUTA, OUTB, OUTC, DEFINE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 41

5.28 [LET]

Syntax : [LET] { variable } = { expression }

Overview : Assigns an expression to a variable

Operators : variable is a user defined variable.

expression is one of many options – these can be a combination of
variables, maths, and numbers or other command calls (see below)

Example 1 : LET A=1

A=1
Both the above statements are the same

Example 2 : A=B+3

Example 3 : A=A<<1

Example 4 : LET B=EEDATA (C+8)

Notes : The LET command is optional

See also : DIM

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 42

5.29 MEMREAD

Syntax : { variable } = MEMREAD { location }

Overview : Reads data from an external 24C01 / 02 / 04 / 08 serial eeprom con-

nected to the I2C bus

Operators : variable is a user defined variable

location is a user defined variable or constant which points to the lo-
cation in the eeprom you wish to read

Example : INCLUDE I2CBUS

DIM A
INIT I2CBUS
A=MEMREAD (120)

This reads location 120 of the serial eeprom attached, and places the
value in variable A

Package : The MEMREAD command is only available after the I2CBUS pack-

age is loaded and initialised

Notes : The I2C commands use fixed pins for the SDA and SCL connections: -

PortA bit 0 is used for SDA
PortA bit 1 is used for SCL

See also : MEMWRITE, INIT

The above circuit shows the connections for a 24C02 serial eeprom. Eeproms, 24C01,
24C04, and 24C08 also use this circuit.

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pF

C1
10uF

C2
0.1uF

R1
4.7k

+5 Volts

C3
22pF

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

VCC
WP

SCL
A1
A2

VSS

24C02

7

8

A0

SDA

1

2

3

4

6

5

R2-R3
4.7k

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 43

5.30 MEMWRITE

Syntax : MEMWRITE { location },{ value }

Overview : Write data to an external 24C01 / 02 / 04 / 08 serial eeprom con-

nected to the I2C bus

Operators : value is a variable or a number

location is a user defined variable or constant which points to the lo-
cation in the eeprom you wish to write

Example : INCLUDE I2CBUS

DIM A
DIM Addr
INIT I2CBUS
A=10
Addr=121
MEMWRITE 120,5 ‘ Write 5 into address location 120
DELAY (4) ‘ Delay for approx 10ms
MEMWRITE Addr,A ‘ Write the value of A into address 121

 DELAY (4) ‘ Delay for approx 10ms

This writes location 120 of the serial eeprom attached with the value 5
and location 121 with the contents of A, in this case 10

Package : The MEMWRITE command is only available after the I2CBUS pack-

age is loaded and initialised

Notes : The I2C commands use fixed pins for the SDA and SCL connections: -

PortA bit 0 is used for SDA
PortA bit 1 is used for SCL

After the MEMWRITE command is used, a delay of 10ms must be im-
plemented to allow the serial eeprom to allocate the byte into mem-
ory.

If serial commands are used on the same port (i.e. PortA) then the
INIT 12CBUS command must be placed after the INIT SERIAL com-
mand.

See also : MEMWRITE, INIT, see MEMREAD for a suitable circuit layout

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 44

5.31 OUTA , OUTB , OUTC

Syntax : OUTA or OUTB or OUTC ({ data })

Overview : Send data to PortA, PortB, or PortC

Operators : data is a user defined variable or number

Example : DIM X ‘ Declare variable X

X=32 ‘ Place 32 into variable X
OUTA (12) ‘ Place the value 12 (00001100) onto PortA
OUTB (X) ‘ Place the contents of variable X onto PortB

Notes : Before the OUT command is used, the port’s direction should be

configured using the DEFINE command.

See also : INPORTA, INPORTB, INPORTC, DEFINE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 45

5.32 PEEK

Syntax : { variable } = PEEK ({ file register })

Overview : Use the PEEK command to retrieve the value of a File Register and

place into a variable

Operators : variable is a user defined variable.

file register can be a number or the contents of a variable.

Example 1 : A=PEEK (15)

Variable A will contain the value of File Register 15. If the device is a
16F84, for example, this file register is one of the 36 general-purpose
registers (SRAM).

Example 2 : B=15

A=PEEK (B)

Same function as example 1

See also : POKE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 46

5.33 POKE

Syntax : POKE ({ data },{ file register })

Overview : Use the POKE command to assign data to a File Register.

Operators : data can be a number or the contents of a variable.

file register can be a number or the contents of a variable.

Example : ‘ File Register 12 will be assigned the value 15.

A=15
POKE (12,A)

Notes : POKE and PEEK are the two most powerful commands in the com-

piler’s arsenal. With proper use, these commands allow full control
over the PIC’s hardware registers.

See also : PEEK

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 47

5.34 PRINT

Syntax : PRINT { string / [$][#] variable / [$][#]number }

Overview : Display strings, variables or numbers on an LCD display

Operators : string is any alphanumeric string you wish to display which must be

enclosed in quotes (“”).
variable is a user defined variable.
number is (guess what) a number.

The # and $ symbols define how the output is displayed.
means display the number/variable as a character
$ means display the number/variable as a hex number.
if our variable contains the value 70 then :

PRINT variable will display 70 (i.e. the value)
PRINT #variable will display a letter ‘F’ (i.e. ASCII char 70)
PRINT $variable will display 46 (i.e. 70 in hex)

Example : DEVICE 16F84

INCLUDE LCD
DIM MyVar
INIT LCD,PortB
CLS
MyVar=65
PRINT "HELLO"
CURSOR 5,2
PRINT $MyVar,#32,#Myvar
STOP
END

Firstly, the LCD is cleared using the CLS command, placing the cur-
sor at the home position i.e. 1,1. Next, the word HELLO is displayed
in the top left corner. The cursor is then moved to column 5 row 2.
Output then is 41 (65 converted to hex), a space (ASCII char 32), let-
ter ‘A’ (ASCII char 65)

Package : The LCD package must first be loaded then initialised before this

command is available. See above example.

See also : INIT, INCLUDE, CURSOR, see CLS for a suitable circuit

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 48

5.35 READ

Syntax : READ { variable }

Overview : READ the next value from a DATA table and place into variable

Operators : variable is a user defined variable

Example : DIM I

DATA 5,8,”fred”,12
RESTORE
READ I
‘ I will now contain the value 5
READ I
‘ I will now contain the value 8
RESTORE 3
‘ Pointer now placed at location 4 in our data table i.e. “r”
READ I
‘ I will now contain the value 114 i.e. the ‘r’ character in decimal

The data table is defined with the values 5,8,102,114,101,100,12 as
“fred” equates to f:102,r:114,e:101,d:100 in decimal. The table pointer
is immediately restored to the beginning of the table. This is not al-
ways required but as a general rule, it is a good idea to prevent table
reading from overflowing.

The first READ I takes the first item of data from the table and incre-
ments the table pointer. The next READ I therefore takes the second
item of data.

RESTORE 3 moves the table pointer to the fourth location in the table
– in this case where the letter ‘r’ is. READ I now retrieves the decimal
equivalent of ‘r’ which is 114.

Notes : Alphabetic DATA is only allowed in LET Pic BASIC Pro. Numeric only

in the LITE version.
DATA tables must be declared after any DIM statements.
Attempts to read past the end of the table will result in errors and un-
determined results.

See also : DATA , RESTORE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 49

5.36 REM

Syntax : REM comments or ‘ comments

Overview : Insert reminders in your BASIC source code. These lines are not

compiled and are used merely to provide information to the person
viewing the source.

Operators : comments can be anything

Example : DIM A,B,C

A=12 : B=4
REM Now I’m going to add them together
C=A+B
‘ Now I’m going to subtract them
C=A-B ‘ They are now subtracted

Notes : ‘ (single quote) and REM are the same

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 50

5.37 RESTORE

Syntax : RESTORE { number / variable }

Overview : Moves the pointer in a DATA table to the position specified by num-

ber or variable

Operators : number is, strangely enough, a number

variable is a user defined variable

Example : DIM I

DATA 5,8,”fred”,12
RESTORE
READ I
‘ I will now contain the value 5
READ I
‘ I will now contain the value 8
RESTORE 3
‘ Pointer now placed at location 4 in our data table i.e. “r”
READ I
‘ I will now contain the value 114 i.e. the ‘r’ character in decimal

The data table is defined with the values 5,8,102,114,101,100,12 as
“fred” equates to f:102,r:114,e:101,d:100 in decimal. The table pointer
is immediately restored to the beginning of the table. This is not al-
ways required but as a general rule, it is a good idea to prevent table
reading from overflowing.

The first READ I takes the first item of data from the table and incre-
ments the table pointer. The next READ I therefore takes the second
item of data.

RESTORE 3 moves the table pointer to the fourth location (first loca-
tion is pointer position 0) in the table - in this case where the letter ‘r’
is. READ I now retrieves the decimal equivalent of ‘r’ which is 114.

Notes : Alphabetic DATA is only allowed in LET Pic BASIC Pro. Numeric only

in the LITE version.

DATA tables must be declared after any DIM statements.
Attempts to read past the end of the table will result in errors and un-
predictable results.

See also : DATA , READ

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 51

5.38 RSIN

Syntax : { variable } = RSIN

Overview : Receive a serial (RS232) byte, at inverted 9600 baud, no parity, and

one stop bit 8-N-1.

Operators : variable is a user defined variable

Example : DEVICE 16F84

INCLUDE SERIAL
DEFINE PortA=00000001 ‘ Configure PortA bit-0 as an input
DIM A
SYMBOL Rin=A.0 ‘ Assign the serial in pin to PortA.0
SYMBOL Rout=A.1 ‘ Assign the serial out pin to PortA.1
SYMBOL Dtr=A.2 ‘ Assign the handshaking pin to PortA.2
INIT SERIAL Rin,Rout,Dtr ‘ Inform the compiler

A=RSIN ‘ Read a serial byte and place in A

Notes : The baud rate of the serial byte to receive is oscillator dependant.
 If a 4MHz crystal is used, the baud rate is 9600
 If an 8MHz crystal is used, then the baud rate will double to 19200

Before the RSIN command may be used, it is necessary to configure
the relevant port’s direction, and assign the port pins: -

DEFINE PortA=00000001 ‘ Configure bit-1 of PortA as an input
RIN is the serial input pin, therefore its direction should be set to IN-
PUT
ROUT is the serial output pin, therefore its direction should be set to
OUTPUT
DTR is an optional handshaking line for use with RSIN. If it is not
used, then simply omit the SYMBOL DTR statement. However, if it is
used, then its port pin should be set as an OUTPUT.

Package : The SERIAL package must first be loaded then initialised before this
command is available. Also, the two (optional three) port pins must be
assigned.

See also : RSOUT, INIT, INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 52

5.39 RSOUT

Syntax : RSOUT ({ value })

Overview : Transmit a serial (RS232) byte, at inverted 9600 baud, no parity, and

one stop bit 8-N-1.

Operators : value is a user defined variable or number

Example : DEVICE 16F84

INCLUDE SERIAL
DEFINE PortA=00000001 ‘ Configure PortA bit-0 as an input
DIM A
SYMBOL Rin=A.0 ‘ Assign the serial in pin to PortA.0
SYMBOL Rout=A.1 ‘ Assign the serial out pin to PortA.1
INIT SERIAL Rin,Rout,Dtr ‘ Inform the compiler
 ‘ Send string '0 - Z' to rsout.-

Loop: FOR A=48 TO 90
RSOUT (A)
NEXT A
GOTO Loop

Notes : The baud rate of the serial byte to transmit is oscillator dependant.
 If a 4MHz crystal is used, the baud rate is 9600
 If an 8MHz crystal is used, then the baud rate will double to 19200

Before the RSOUT command may be used, it is necessary to config-
ure the relevant port’s direction, and assign the port pins: -

DEFINE PortA=00000001 ‘ Configure bit-1 of PortA as an input
RIN is the serial input pin, therefore its direction should be set to IN-
PUT
ROUT is the serial output pin, therefore its direction should be set to
OUTPUT
DTR is an optional handshaking line for use with RSIN. If it is not
used, then simply omit the SYMBOL DTR statement. However, if it is
used, then its port pin should be set as an OUTPUT.

Package : The SERIAL package must first be loaded then initialised before this
command is available. Also, the two (optional three) port pins must be
assigned.

See also : RSIN, INIT, INCLUDE

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 53

5.40 SET (or HIGH)

Syntax : SET (or HIGH) { port.bit / symbol }

Overview : Place a port pin in the logic high position. i.e. 1

Operators : port can be A, B, or C

bit is the bit number to be set to 1
symbol can be a symbolic representation of a port bit

Example : SYMBOL LED=B.4

SET B.2
CLEAR LED
HIGH B.3
Bit-2 of PortB is SET to 1. Bit-4 of PortB (symbolised by the name
LED) is CLEARed to 0. Bit-3 of PortB is SET to 1.

Notes : There is no difference between the SET and HIGH commands.

The pin to be used for SET or HIGH must have been previously de-
fined as an output

See also : CLEAR, DEFINE, SYMBOL

The above diagram shows the connection of an LED to any of the
pins of a PIC. A resistor must be used in series with the LED to limit
the current supplied to it.

Connect to
specified
PIC pin

470

LED

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 54

5.41 SLEEP

Syntax : SLEEP

Overview : Places the PIC into low power mode. i.e. power down but leaves the

port pins in their previous states.

See also : END, STOP

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 55

5.42 SOUND

Syntax : SOUND ({ pitch,length,port.bit })

Overview : Toggles the port bit continuously at a speed pitch for a time length

Operators : pitch and length may be any variable or number containing values

between 0 and 255
port is A, B, or C
bit is the bit number you wish to sound.

Example : SYMBOL Speak=B.4

SOUND (100,100,Speak)
SOUND (50,50,B.2)

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 56

5.43 STOP

Syntax : STOP

Overview : STOP halts program execution by sending the PIC into an indefinite

loop.

Example : IF A>12 THEN STOP

{ code data }

If variable A contains a value greater than 12 stop program execution.
code data will not be executed.

Notes : Although STOP halts the PIC in its tracks it does not prevent any

code listed in the BASIC source after it being compiled. To do this use
the END command.

See also : END, SLEEP

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 57

5.44 STORE

Syntax : STORE { address },{ value }

Overview : Write data into the internal eeprom of a 16C84 or 16F84

Operators : address is the location in the eeprom from 0-63

value is the value to place in the eeprom

Example : INCLUDE EEPROM

INIT EEPROM
DIM A,B
A=4 : B=10
STORE 12,32
STORE A,B

Put the value 32 in position 12 of the eeprom
Put the value 10 in position 4 of the eeprom

Notes : This command only applies to the 16C84 or 16F84

Package : The EEPROM module must first be loaded and initialised before the

STORE command is available: -

INCLUDE EEPROM
 INIT EEPROM

See also : EEDATA

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 58

5.45 SWAP

Syntax : SWAP { variable 1 } , { variable 2 }

Overview : The SWAP command swaps the values of two variables.

Operators : variable 1 and variable 2 are existing declared variables.

Example : DIM fred,mary

fred=3
mary=5
SWAP fred,mary

fred and mary are our two declared variables. fred is given a value 3
and mary a value 5. After the SWAP command is executed, fred now
contains 5 and mary contains 3.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 59

5.46 SYMBOL

Syntax : SYMBOL { name }={ port }.{ bit number }

Overview : Assign a symbolic name to represent a bit on a port.

Operators : name can be any symbolic name for easy use

port can be A, B, or C
bit number is the bit to be represented.

Example : SYMBOL LED=B.4

SET LED
CLEAR LED

Bit-4 on port B is symbolised by the name LED. This bit is SET to 1
and then CLEARed to 0.

Notes : SYMBOL must be placed in the declaration section of the program

i.e. just before or after the DIM statement.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 60

5.47 TIMER

Syntax : TIMER { on/off },{ 0-7 }

{ variable }=TIMER

Overview : Clears and then enables the internal timer (TMR0) of the PIC

{ variable }=TIMER to read.

Operators : on - clear and enable timer

off - stop the timer
0-7 - internal prescaler divider
variable is a user-defined variable

Example : ‘ Flashes LED on and off

‘ Use RA4 as counter input pin
‘ LED on / off every 128 counts
‘ LED on port b.0
DEVICE 16F84
DIM A,B
DEFINE PortB=11111110
DEFINE PortA=11111111
SYMBOL LED=B.0
TIMER on,4 ‘ prescaler set to 1:32

Loop: A=TIMER
IF A>128 THEN HIGH LED
IF A<128 THEN LOW LED
GOTO Loop

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 61

6 - Using the PLUS version of the compiler.

The Plus version of the compiler allows the newer 16F87x devices to be used.
These include the 16F873, 16F874, 16F876, and 16F877. All the standard
commands associated with the Pro version are available, however, there are
things to consider when using the new devices.

6.1 - Page boundaries

 Because the 16F87x range of devices have more than 2k of flash eeprom,

page boundaries come into play. This is taken care of within the compiler and
is totally invisible to you, the user. For example, all GOSUBs and GOTOs will
produce code that automatically adjusts the PCLATH bits.

6.2 – Analogue pins

When the 16F87x range of devices are first powered up, or reset, all pins that
are capable of being used for analogue purposes are set to analogue (i.e. AN0
to AN7). This will cause problems if they are used as digital types, therefore, if
your program is not using analogue inputs, these should be turned into digital
types by issuing the following command at the beginning of the program: -

 Device 16F877 ‘ We are using a PIC16F877
 POKE (159,7) ‘ Convert analogue pins to digital

 What this does is place the value 7 into the ADCON1 register, thus disabling

analogue inputs on PortA and PortE (if applicable).

6.3 – Using the ADIN command

The 16F87x range of devices, all contain 10-bit Analogue to Digital Converters,
however, if the ADIN command is used, it will only assign the first 8 bits of the
conversion into the variable. This is unavoidable because of the 8-bit nature of
the compiler. But all is not lost, because the remaining 2-bits are held in the
hardware register ADRESHI, which has the address 158. The Lower 8 bits are
also held in the hardware register ADRESLO, which is address 30.

 To access the top 4-bits, a simple peek command will suffice: -

ResLO=ADIN (3) ‘ Get the lower 8 bits of the ADC conversion
‘ into variable RESLO

ResHI=PEEK (158) ‘ Get the top 2 bits of the ADC conversion
 ‘ into variable RESHI

 Apart from the issues noted above, the new range of PICs may be used as if

they where giant 16F84s.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 62

7 – The on-board Programmer

The compiler has an on-board programmer that allows quick development of
your code. In fact, the compiler has support for two types of programmer, the
universal (see section 8), and the In-Circuit Programmer (available end Janu-
ary 2001). The on-board programmers are not full implementations i.e. they are
cut down programmers, for quick results.

7.1 Using the on-board Programmer

Choosing the type of programmer that you require, is accomplished by clicking
on the Compile->Setup Options->. Click on the ISP menu to choose the In-
Circuit Programmer, the default is set for the universal type.

The programmer is only available after a successful compile has been carried
out. The programming button will them become unshaded.

Depending on which type of programmer was chosen, you will be presented
with the programming window.

Above, are the two programming windows for the type of programmer chosen.
They look identical, apart from the text in the border, which tells you the type.

The default oscillator setting is for an XT crystal, however, this may be
changed by simply choosing any of the four types available.

Note : The programmer is set for NO_WDT, which means that the PIC will not reset

using the watchdog timer. If this option is required, along with any other fuse
settings, you must use the full-featured programming software.

 The type of PIC to program is automatically extracted from the DEVICE direc-

tive used in the BASIC code.

 To program the PIC, simply click on the Begin Program button, not forgetting

to choose the printer port that your programmer is attached to.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 63

8 - Universal PIC Programmer

The Universal PIC Programmer is capable of programming many different
PIC devices, as well as the 24CXX series of I2C serial eeproms. The program-
mer connects to the computer’s parallel port (printer port) using a standard
printer cable and is powered externally by a 12 to 18 Volt, AC or DC power
supply. The use of on-board jumpers allow the selection of 18 or 28 pin de-
vices.

Note : Because PIC devices come in all sizes and pin configurations, some devices

will require adapters. These are available separately from Crownhill, or alterna-
tively, may be constructed on stripboard. The pin arrangements for devices re-
quiring adapters are shown in section 7.

Make sure the PIC to be programmed is removed from the ZIF socket before
the programmer is powered up, as occasional initial voltage surges may dam-
age the PIC chips.

8.1 Using the Programmer

There are four jumpers on the PIC Programmer board (usually coloured red or
blue). These are used to configure the programmer for different device types.
Their location is shown below :

Jumper settings for programming 18-pin devices.
As well as for using the various adapters.

H
C

F
4094

H
C

F
4021

H
C

F
4094

H
C

F
4021

W
01

+

L7805

Jumper-A

1 2 3

1 2 3

1 2

Jumper-
B

Jumper-
C

1 28

16F
84-04

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 64

8.2 - 18 pin Jumper settings

A - Middle pin connected to right pin (i.e. pins 2-3 connected)
B - Middle pin connected to right pin (i.e. pins 2-3 connected)
C - Both NOT connected (to avoid losing them I suggest placing each one over
1 pin only)

8.3 - 28 pin Jumper settings

A - Middle pin connected to left pin (i.e. pins 1-2 connected)
B - Middle pin connected to left pin (i.e. pins 1-2 connected)
C - Both connected (i.e. pins 1-2 connected)

Note : At present, only the 16C55, 16C57 and 16CR57A devices require 28-pin

jumper settings. All other 28-pin devices require an adapter.

Setting the unit for 28-pin mode and then putting in a device that should be set
for 18-pin may result in damage to the PIC. All devices using an adapter must
be set to 18-pin.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 65

9 - Adapter layouts

The various types of adapter are available from Crownhill, however, if you wish
to produce your own, the circuit arrangements are shown as well as possible
strip-board layouts for some of the more popular types of PIC.

Note : When using any of the adapters, the jumpers should be configured for 18-pin

devices. Any other configuration may cause damage to the PIC.

9.1 - 8 pin Adapter. PIC types …. 12C508,12C509,12C671, 12C672, 12C674 etc.

8 pin Adapter layout and circuit.

Pin 4 of ZIF

Pin 3 of ZIF

Pin 2 of ZIF

Pin 1 of ZIF

Pin 8 of ZIF

Pin 7 of ZIF

Pin 6 of ZIF

Pin 5 of ZIF

Pin 12 of ZIF

Pin 11 of ZIF

Pin 10 of ZIF

Pin 9 of ZIF

Pin 13 of ZIF

Pin 14 of ZIF

Pin 25 of ZIF

Pin 26 of ZIF

Pin 27 of ZIF

Pin 28 of ZIF

Pin 21 of ZIF

Pin 22 of ZIF

Pin 23 of ZIF

Pin 24 of ZIF

Pin 17 of ZIF

Pin 18 of ZIF

Pin 19 of ZIF

Pin 20 of ZIF

Pin 16 of ZIF

Pin 15 of ZIF

Denotes track cut
1

17

18

19

9

10

11

1

2

4

6

7

8

28

ZIF Socket

PIC Device

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 66

9.2 - 28 pin Adapter. PIC types …. 16C62 /A, 16C63, 16C66, 16C72 /A, 16C73 /A /B

16C76, 16C77X, 16F873, 16F876

28 pin adapter layout and circuit.

Pin 4 of ZIF

Pin 3 of ZIF

Pin 2 of ZIF

Pin 1 of ZIF

Pin 8 of ZIF

Pin 7 of ZIF

Pin 6 of ZIF

Pin 5 of ZIF

Pin 12 of ZIF

Pin 11 of ZIF

Pin 10 of ZIF

Pin 9 of ZIF

Pin 13 of ZIF

Pin 14 of ZIF

Pin 25 of ZIF

Pin 26 of ZIF

Pin 27 of ZIF

Pin 28 of ZIF

Pin 21 of ZIF

Pin 22 of ZIF

Pin 23 of ZIF

Pin 24 of ZIF

Pin 17 of ZIF

Pin 18 of ZIF

Pin 19 of ZIF

Pin 20 of ZIF

Pin 16 of ZIF

Pin 15 of ZIF

Denotes track cut

1

17

18

19

9

10

1

8

19

20

27

28 28

ZIF Socket

PIC Device

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 67

9.3 - 40 pin Adapter. PIC types …. 16C64 /A, 16C65 /A, 16C67, 16C74 /A /B, 16C77

16F874 , 16F877

40 pin adapter layout and circuit.

Pin 4 of ZIF
Pin 3 of ZIF
Pin 2 of ZIF

Pin 1 of ZIF

Pin 8 of ZIF
Pin 7 of ZIF

Pin 6 of ZIF
Pin 5 of ZIF

Pin 12 of ZIF
Pin 11 of ZIF
Pin 10 of ZIF

Pin 9 of ZIF

Pin 13 of ZIF
Pin 14 of ZIF

Denotes track cut

Pin 25 of ZIF

Pin 26 of ZIF
Pin 27 of ZIF

Pin 28 of ZIF

Pin 21 of ZIF
Pin 22 of ZIF

Pin 23 of ZIF
Pin 24 of ZIF

Pin 17 of ZIF

Pin 18 of ZIF
Pin 19 of ZIF
Pin 20 of ZIF

Pin 16 of ZIF
Pin 15 of ZIF

1

17

18

19

9

10

1

11

31

39

40 28

ZIF Socket

PIC Device

12

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 68

10 - Overview of the programming software

The software supplied with the programmer is pretty much self-explanatory, so
we’ll just briefly run through the various windows that appear on the screen.

The Fuses window allows you to change the configuration of the PIC’s fuses,
Protection on-off, Type of oscillator used etc.

The Device Info window informs you if an adapter is required, or not, for the
particular type of PIC to be programmed.

The Data Memory window shows the contents of the PIC’s eeprom data, if
any. Not all PIC’s have on-board eeprom; therefore, this window will not always
appear.

The Hex Code and Program Memory windows show the contents of the PIC’s
main memory in 8-bit merged hex format.

Fuse Settings
for the various

PIC's

The program
memory's

contents are
displayed here

This informs the
user if an
adapter is
required

Eeprom data
memory.

The HEX code
produced, will be
displayed here

Choose the
PIC device to

program

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 69

10.1 - What do all the other menu options do?

Most of the menu options self-explanatory, but one needs mentioning a little fu-
rther: -

The File menu allows you to load and save hex files.

The Device menu enables you to read, write, erase, or program the PIC de-
vice.

The Windows menu allows you to remove any or all of the separate windows
i.e. fuses, device info etc.

The Help menu allows you to have a quick-view of adapters required for the
particular device.

One of the most important menus is the Settings menu. This allows the pro-
grammer to be tailored to your computer. You can choose the parallel port that
the programmer is connected to, and test if the programmer is operating cor-
rectly.

It also allows a choice of the type of hex file to program, either INHX8 or
INHX16. INHX8 is the normal format, and also the type the compiler produces.

A useful feature of the programmer is the ability to save the fuse configurations
that have been previously set, along with the hex file. If the hex file is re-
loaded, then the fuses do not require updating.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 70

10.2 – Learning by doing

The most efficient way of learning how the programming software works is by
an actual hands-on approach, therefore, we will go through the individual steps
required for programming a PIC device. The PIC we will program is the ever-
popular PIC16F84.

Make sure the programmer is powered up and connected to the printer port of
the computer. Next, click on the Settings menu, and choose the printer port
that your programmer is attached to, the default is LPT1. The other parameters
in the settings window should look like the screen-shot below: -

Once the programmer has tested OK, we are ready to program the PIC.

Move the mouse to the Device window and select the PIC type to be pro-
grammed i.e. PIC16C84, PIC16F877 etc. Notice the Device Info window, this
will inform you as to whether the PIC to be programmed requires an adapter.

Click on File -> Open, and choose the hex file of the program to place into the
PIC. If the fuses have not been included in the assembler source code, then a
warning will inform you. If the warning appeared, then move the mouse over to
the Fuses window, and set the fuses manually. Once you are happy with all
the settings, simply click on the program button, that’s the one with an inte-
grated circuit with a red arrow pointing towards it.

If all is well, then a window will appear with OK.

Simple when you know how isn’t it?

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 71

Support.

Please visit the LET Basic web site http://www.letbasic.com, to check for updates and
code examples.

Support for LET PIC BASIC is provided exclusively via the LET BASIC mailing list.
Telephone support is provided on +44 (0) 1353 666709 for new users during initial in-
stallation only, thereafter all support is via the mailing list. Telephone support is NOT
available for enquiries relating to syntax or other code related questions, questions of
this nature should be asked via the mailing list.

Crownhill staff monitor the mailing list daily and support questions will be answered via
the list. Code examples will be posted to the web page from time to time and it is our
intention to build a searchable FAQ database as the product matures.

You may join the mailing list by sending an email to:

majordomo@qunos.net

with the text:

SUBSCRIBE LETBASIC-L

 as the message.

You will receive a confirmation message from the mailing list manager, you must reply
to the confirmation as requested, you will then be added to the mailing list. When send-
ing messages to the mailing list you must send the message from the address that you

used to subscribe to the list. Your message should be sent to:

letbasic-l@qunos.net

all list members will see your message and may reply to the message. We reserve the
right not to reply to messages, or to remove messages from the list in the event of the
message breaching our mailing list policy.
 You may view the mailing list policy on the letbasic.com web page.

Components at discount prices are available from http://www.letbasic.com web site and
http://www.crownhill.co.uk web site.

If you do not have access to the Internet or you are unhappy with your current Internet
Service provider, we recommend www.cambs.net for FREE web, email and local dial
up access (local call charges apply at the time of writing) this service is provided by
Crownhill Associates Ltd.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 72

Notes.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 73

L.E.T
PIC BASIC

COMPILER

Version 7.0

UPDATE

BASIC compiler for the

12C508, 12C509
16C71, 16F83, 16F84, 16F873, 16F874, 16F876, 16F877

range of PIC micro’s

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 74

Please Note.

Although every precaution has been taken with the preparation of this booklet
to ensure that any projects, designs or programs enclosed, operate in a correct
and safe manner. The author and publisher assume no responsibility for errors
or omissions. Neither is any liability assumed for the failure of any project, de-
sign or program, or any damage caused to equipment that it may be connected
to, or used in combination with.

Copyright Crownhill Associates. All right reserved.

The Microchip logo and name are registered trademarks of Microchip Tech-
nologies Inc.

The L.E.T PIC BASIC Lite and Pro are registered trademarks of Crownhill As-
sociates.

Published and distributed by Crownhill Associates Ltd
First Update Edition January 2001.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 75

Table of Contents.

1 Introduction 3

2 What’s new? 4
2.1 Assembler Code Window. 4
2.1 Built in Assembler. 5
2.3 Programmer options. 6
2.4 PRO or PLUS. 8

3 Language changes. 9
3.1 LABELS. 9
3.2 VARIABLES 10
3.3 NUMBER SYSTEM 11
3.4 ADIN 12
3.5 ASM 13
3.6 DEFINE 14
3.7 EEDATA and STORE 15

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 76

1 - Introduction

This update to the manual is necessary, to illustrate some extra features that
have been incorporated into the compiler. The compiler is undergoing a grad-
ual evolutionary process. The main difference that you’ll notice (if you owned
any previous versions) is the editor. No longer is it the unfriendly, and awkward
to use interface that it once was, but is now a fully colour syntax highlighted,
comfortable to use, and above all, friendly environment in which to write your
masterpiece.

These updates, and bug fixes (if any), will be an ongoing thing. Each month or
two, a slightly improved version of the compiler will be released. These up-
dates will be in response to your feedback via the mailing list.

As it stands, the compiler is capable of producing some remarkable coding pro-
jects. But with each new release, things can only get better.

Don’t worry; you won’t have to learn a new dialect every time a new upgrade is
brought out. Each improvement, or addition will be a natural progression from
the existing structure of the language.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 77

2 - What’s new?

The facelift to the editor is the first thing we’ll look at. It has several new fea-
tures, as well as original features that have been improved upon.

Notice the full colour syntax highlighting of keywords, numbers, hardware reg-
isters, and remarks. This makes the code extremely easy to read, and a pleas-
ure to write.

2.1 - Assembler Code Window.

Most of the buttons have stayed the same. However, one button needs a spe-
cial mention. Namely, the show assembler list button.

You might be thinking that we’ve abandoned the window that shows the as-
sembler code produced. This is such a useful feature that we decided to give it
it’s own special window that can be displayed at will. By clicking on the button
with the Microchip logo, a new floating window is shown.

Show / Hide
the

AssemblerListing

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 78

This also uses syntax highlighting for the assembler code, which makes any
debugging that may be required, a darn sight easier.

The window’s dimensions and position are saved when the compiler is closed.
This means that once you’ve found the perfect position and size for it, you
needn’t worry about having to change it every time the compiler is loaded.

2.2 - Built in Assembler.

The compiler now uses Microchip’s tm, MPASMWIN assembler. This is installed
along with the compiler at setup time. This has many benefits over the previous
incorporated assembler. As we’ll see later.

When the compiler button, or compile menu option is selected, the program will
be compiled, then MPASM will automatically assemble the code into a hex file,
ready for the programmer. If any syntax errors occur within your BASIC code,
then MPASM will not execute, and the error, or errors will be displayed in the
error box at the bottom of the code editor. Before I forget, the error box itself is
scaleable. This will enable all the errors (if applicable) to be viewed instead of a
few at a time requiring scrolling.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 79

 The above screenshot is the result of a successful compile and assemble.

Because the compiler and assembler are two separate entities working in con-
junction, there may be times when a program compiles correctly, but assem-
blers incorrectly. If this happens, then the assembler errors are displayed in the
error window. The offending line (or lines) may then be viewed using the float-
ing assembler window, and any corrections can be easily made.

2.3 – Programmer options.

There is now a choice of three programmers from within the confines of the
editor. By choosing Compile->Programmer Options, you can choose either the
Universal, In-Circuit programmer, or melab’s EPIC tm programmer.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 80

Both the Universal and the In-Circuit programming software have had im-
provements made to them. The programmers now take their configuration fuse
settings from the hex file created by the compiler. However, you have the
choice of manipulating the fuses manually when the programmer window ap-
pears.

If the EPIC option is chosen, you will be asked for the location of its working di-
rectory. This needs only to be done once, as the compiler saves the informa-
tion permanently. If EPIC’s working directory changes, then you can alter these
details by choosing Options->Change Epic Details.

Note. that the EPIC software must already be installed on your machine. And
you must own the EPIC programmer that accompanies it. The LET PIC BASIC
editor does not have the EPIC software built in. It merely allows EPIC to be run
from the compiler. The Universal, or In-Circuit programmers are not compatible
with EPIC’s software, and EPIC’s hardware is not compatible with the Univer-
sal, or In-Circuit software.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 81

2.4 - PRO or PLUS?

Both the PRO and PLUS versions of the compiler are now one and the same.
The once separate PLUS compiler has been incorporated into the PRO ver-
sion. Simply change the DEVICE directive to one of the 16F87x range of de-
vices, and the compiler does the rest.

Example : DEVICE 16F877

All page boundary manipulation is automatic and invisible to you, the user. Vir-
tually anything that compiles with a 16F84 or 16C71 device, will compile on
one of the 16F87x devices. This has the advantage of offering, not only more
memory, but by manipulating the special hardware registers associated with
the new breed of PICs, hardware SPI, I2C, and UART operations may be ac-
complished.

Note : Because of the extra page boundary manipulation that is required when using
the PICs with more that 2k of flash memory. Your code produced will be
slightly longer. To overcome this to a certain degree, always place your sub-
routines at the beginning of the program, not forgetting to jump over them to
your main program:

Example : DEVICE 16F877

 DIM any variables
 DEFINE any ports

 GOTO Main

 ‘ Subroutines are here

Sub1:
 ……..
 Sub2
 ……..

 ‘ The main program starts here.

Main:

This is not required when using PICs with less than 2k of flash memory. But it’s
a good habit to get into anyway.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 82

3 - Language changes.

This upgrade to version 7.0 of the compiler is not only cosmetic. Improvements
have been made to the actual BASIC language. These will be outlined in the
following section.

3.1 – LABELS.

LABELs may now have numerical content, and an underscore. This makes for
much more understandable code. Consider: -

 LABELTWO:

 and

 LABEL2:

Each has its merits, but the second version is not only easier to write, but is
easier to spot in a large program.

Consider also: -

LABELTWO:

and

LABEL_TWO:

 Again, the second version is easier to understand and spot in a large program.

Note : Underscores and numbers may be freely mixed, but a label cannot start with a

number, or the compiler will issue an error: -

2LABEL: is NOT allowed.

Labels can be up to 32 characters in length.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 83

3.2 - VARIABLES.

Although, still 8-bit in nature, variables have had a major overhaul.

Variable names, as in the case or labels, may now freely mix numeric content
and underscores.

Example : DIM MyVar
 or
 DIM My_Var
 or
 DIM My_Var2

Variable names may start with an underscore, but must not start with a num-
ber. Variables may also be up to 32 characters in length.

 DIM 2MyVar is NOT allowed.

Variable assignment has also been improved. The compiler now recognises all
the hardware registers associated with the PIC chosen by the DEVICE direc-
tive.

Example : INTCON=1 ‘ Will load the INCON register with value 1

This in fact eliminates the need for the commands PEEK and POKE, because
the variable can now be read or written too directly.

Instead of using: -

MyVar=PEEK(3) ‘ Read the contents of the STATUS register

You can use: -

MyVar=STATUS

And…

POKE (3,2) ‘ Load the STATUS register with value 2

You can use: -

STATUS=2

This also eliminates the use of the OUTA,B,C,D command and the IN-
PORTA,B,C,D command, as the variable’s name may be used in an IF-THEN
statement:-

IF PORTA=2 THEN do something

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 84

3.3 - NUMBER SYSTEMS.

The compiler now recognises Hexadecimal, Binary, and Decimal numeric
types.

A HEXADECIMAL number is preceded by the $ character: -

MyVar = $10 ‘ Load MyVar with a value of 16

A BINARY number is preceded by the % character: -

MyVar = %10000000 ‘ Load MyVar with a value of 128

Binary numbers do not need to be 8 characters in length.

The value %1001

Is the same as

%00001001

A DECIMAL number is not preceded by any character.

Binary notation has the advantage when setting a particular sequence of bits in
a register. Consider:-

INTCON = 9 ‘ Set bits 0 and 3 of INTCON

And

INTCON = %1001 ‘ Set bits 0 and 3 of INTCON

Binary also comes into its own when using the bit wise AND, OR, XOR opera-
tors. Because you can plainly see which bits are being masked or set: -

MyVar = MyVar & %00001111 ‘ Mask the lower 4 bits of MyVar

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 85

3.4 - ADIN

The ADIN command now works with any of the devices that contain an on-
board ADC. The operation of the ADIN command has been slightly altered, in
that, the ADCON1 register needs to be manipulated before the ADIN com-
mand is issued.

The ADCON1 register configures the port pins for either analogue input or digi-
tal. Consult the PIC’s datasheet for the value to place into ADCON1 for a par-
ticular configuration.

And also, before the ADIN command is used, the pin/s of interest must be con-
figured as inputs, either by using the DEFINE command or setting the port’s
TRIS value i.e. TRISA = number.

channel number may now contain either a user defined variable or numeric
value between 0 and the amount of ADC channels available on the selected
device

Example : ‘ Retrieve the value of channel 3

‘ of the A to D Converter and place into variable MyVar.

DEVICE 16F877
INCLUDE A2D
INIT A2D
DIM MyVar
DEFINE PortA %00001000 ‘ Configure AN3 (PortA.3) as an input
INTCON1= %100 ‘ Set AN3 as analogue
MyVar=ADIN (3) ‘ Place the conversion into variable MyVar

The 16F87x range of devices, all contain 10-bit Analogue to Digital Converters,
however, if the ADIN command is used, it will only assign the first 8 bits of the
conversion into the variable. This is unavoidable because of the 8-bit nature of
the compiler. But all is not lost, because the remaining 2-bits are held in the
hardware register ADRESH. The Lower 8 bits are also held in the hardware
register ADRESL.

 To access the top 2-bits, use: -

ResLO=ADIN (3) ‘ Get the lower 8 bits of the ADC conversion
‘ into variable RESLO

ResHI=ADRESL ‘ Get the top 2 bits of the ADC conversion
 ‘ into variable RESHI

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 86

3.5 - ASM

Because the compiler now uses a separate assembler, the ASM directive has
had a major overhaul. There are now three ways of using assembler in the
compiler.

The ASM directive no longer uses the curly braces, but uses the format: -

ASM

Mnemonics

ENDASM

Any mnemonics used within these two directives, are passed directly to
MPASM, without the compiler’s intervention. This allows FULL control over the
PIC in use. It also allows the extra features of MPASM to be used, such as
Macros, Conditional assembly etc.

Another way of passing mnemonics directly to MPASM is by using the @ char-
acter in front of the mnemonic: -

@ MOVLW 100

The third way of using assembler in the compiler is in the form of extra com-
mands. All the mnemonics may now be used freely along with BASIC com-
mands. Take the example: -

DIM MyVar
MyVar=10 ‘ Load MyVar with a value of 10
BSF MyVar,1 ‘ Set bit 1 of MyVar
PRINT MyVar,” “ ‘ Print the value of MyVar

If mnemonics are used alongside BASIC commands, they are treat nearly the
same as BASIC commands, and must obey the same rules, such as, the vari-
able must be declared before it is used.

If there is a problem with your code, assembler errors will be produced instead
of compiler errors, if the mnemonics are passed directly to MPASM.

The ability to freely mix BASIC and mnemonics is an incredibly powerful tool.
But it must be used wisely.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 87

3.6 - DEFINE

With the new numbering system now in place, the DEFINE command’s syntax
has been slightly altered to allow either Hex, Binary, or Decimal values to con-
figure the Port bits: -

Instead of using the previous: -

DEFINE PortX = 10001010

A more flexible approach has been adopted, in that, the equals assignment is
now optional, and the numeric value does not need to be a binary value con-
taining 8 characters. For example: -

DEFINE PortA %1001

will configure PortA, bits 0 and 3 as inputs. And so will…..

DEFINE PortA = %1001

Another use for the DEFINE command is to set general parameters for the
compiler. This will be used extensively in future upgrades, but for now, only
one has been implemented: -

DEFINE REMARKS 0

and…

DEFINE REMARKS 1

This command removes the commented BASIC statements from the assem-
bler code, thus reducing its size considerably. It does not affect the compiled
code in any way. But if you have a large program with many remarks, MPASM
might complain about the size of the .ASM file.

L.E.T PIC BASIC Compiler

 Copyright Crownhill 2000 88

3.7 - EEDATA and STORE

Both these commands now work with any of the devices that support on-board
eeprom. Their syntax has not changed in any way, and their operation is invisi-
ble to the user. But you must remember that each PIC type has differing
amounts of on-board eeprom.

Example 1 : DEVICE 16F84
 DIM My_Var
 STORE 24,127
 MyVar=EEDATA (24)
 PRINT MyVar,” “

The above program will write and read address 24 of the on-board
eeprom, of the 16F84 device.

Example 2 : DEVICE 16F874
 DIM My_Var
 STORE 24,127
 MyVar=EEDATA (24)
 PRINT MyVar,” “

The above program will do the exact same thing as example 1, except
on a 16F874 device.

